OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3108–3115

Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH

Paul S. Hsu, Waruna D. Kulatilaka, Sukesh Roy, and James R. Gord  »View Author Affiliations

Applied Optics, Vol. 52, Issue 13, pp. 3108-3115 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:

Original Manuscript: February 11, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 5, 2013
Published: April 30, 2013

Paul S. Hsu, Waruna D. Kulatilaka, Sukesh Roy, and James R. Gord, "Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH," Appl. Opt. 52, 3108-3115 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983). [CrossRef]
  2. W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996). [CrossRef]
  3. R. Jahn, M. Dressel, W. Neu, and K. H. Jungbluth, “Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers,” Proc. SPIE 1424, 23–32 (1991). [CrossRef]
  4. D. Singleton, G. Paraskevopoulos, R. Taylor, and L. Higginson, “Excimer laser angioplasty: tissue ablation, arterial response, and fiber optic delivery,” IEEE J. Quantum Electron. 23, 1772–1782 (1987). [CrossRef]
  5. A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991). [CrossRef]
  6. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989). [CrossRef]
  7. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988). [CrossRef]
  8. R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics Publishing, 1986).
  9. U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992). [CrossRef]
  10. K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999). [CrossRef]
  11. M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004). [CrossRef]
  12. K. Saito, M. Ito, A. J. Ikushima, S. Funahashi, and K. Imamura, “Defect formation and recovery processes in hydrogen-loaded silica fibers,” J. Non-Cryst. Solids 347, 289–293 (2004). [CrossRef]
  13. P. S. Hsu, W. D. Kulatilaka, N. Jiang, J. R. Gord, and S. Roy, “Investigation of optical fibers for gas-phase, ultraviolet laser-induced fluorescence (UV-LIF) spectroscopy,” Appl. Opt. 51, 4047–4057 (2012). [CrossRef]
  14. C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988). [CrossRef]
  15. P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995). [CrossRef]
  16. G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992). [CrossRef]
  17. U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003). [CrossRef]
  18. R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003). [CrossRef]
  19. G. Hillrichs, C. Gonschior, K. F. Klein, and R. Wandschneider, “Performance of low mode and single mode optical fibers for high peak power 355 nm laser radiation,” Proc. SPIE 7894, 78940Z (2011). [CrossRef]
  20. F. Loccisano, S. Joshi, I. S. Franka, Z. Yin, W. R. Lempert, and A. P. Yalin, “Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics,” Appl. Opt. 51, 6691–6699 (2012). [CrossRef]
  21. W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011). [CrossRef]
  22. C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999). [CrossRef]
  23. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011). [CrossRef]
  24. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous, burst-mode laser for high-speed planar imaging” Opt. Lett. 37, 1346–1348 (2012). [CrossRef]
  25. F. Fuest, J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett. 37, 3231–3233 (2012). [CrossRef]
  26. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, 1996).
  27. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging,” Opt. Express 21, 681–689 (2013). [CrossRef]
  28. B. Peterson and V. Sick, “Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine,” Appl. Phys. B 97, 887–895 (2009). [CrossRef]
  29. J. Olofsson, M. Richter, M. Alden, and M. Auge, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77, 013104 (2006). [CrossRef]
  30. N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “Developement of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames,” Proc. Combust. Inst. 33, 767–774 (2011). [CrossRef]
  31. M. Cundy and V. Sick, “Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser,” Appl. Phys. B 96, 241–245 (2009). [CrossRef]
  32. V. Sick, M. Drake, and T. Fansler, “High-speed imaging for direct-injection gasoline engine research and development,” Exp. Fluids 49, 937–947 (2010). [CrossRef]
  33. K. N. Gabet, N. Jiang, R. A. Patton, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106, 569–575 (2012). [CrossRef]
  34. P. S. Hsu, N. Jiang, J. R. Gord, and S. Roy, “Fiber-coupled, 10 kHz simultaneous OH planar laser-induced fluorescence/particle-image velocimetry,” Opt. Lett. 38, 130–132(2013). [CrossRef]
  35. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998). [CrossRef]
  36. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010). [CrossRef]
  37. R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31 (1987). [CrossRef]
  38. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985). [CrossRef]
  39. A. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47, 4812–4832 (2008). [CrossRef]
  40. I. Nuritdinov, K. Y. Masharipov, and M. O. Doniev, “Formation of radiation-induced defects in silica glasses at high irradiation temperatures,” Glass Phys. Chem. 29, 11–15 (2003). [CrossRef]
  41. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectric with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef]
  42. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58, 2387–2390 (1998). [CrossRef]
  43. J. Han, Y. Li, Q. Zhang, Y. Fu, W. Fan, G. Feng, L. Yang, X. Xie, Q. Zhu, and S. Zhou, “Phase explosion induced by high-repetition rate pulsed laser,” Appl. Surf. Sci. 256, 6649–6654(2010). [CrossRef]
  44. A. Salazar, “On thermal diffusivity,” Eur. J. Phys. 24, 351–358 (2003). [CrossRef]
  45. T. Wang, Z. Xiao, and W. Luo, “Influences of thermal annealing temperatures on irradiation induced E’ centers in silica glass,” IEEE Trans. Nucl. Sci. 55, 2685–2688 (2008). [CrossRef]
  46. P. S. Hsu, S. Roy, N. Jiang, and J. R. Gord, “Large-aperture, tapered fiber–coupled, 10 kHz particle-image velocimetry,” Opt. Express 21, 3617–3626 (2013). [CrossRef]
  47. X. Zhu, A. Schulzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited