OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 13 — May. 1, 2013
  • pp: 3108–3115

Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH

Paul S. Hsu, Waruna D. Kulatilaka, Sukesh Roy, and James R. Gord  »View Author Affiliations


Applied Optics, Vol. 52, Issue 13, pp. 3108-3115 (2013)
http://dx.doi.org/10.1364/AO.52.003108


View Full Text Article

Enhanced HTML    Acrobat PDF (618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Spectroscopy

History
Original Manuscript: February 11, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 5, 2013
Published: April 30, 2013

Citation
Paul S. Hsu, Waruna D. Kulatilaka, Sukesh Roy, and James R. Gord, "Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH," Appl. Opt. 52, 3108-3115 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-13-3108

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited