OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3116–3126

Compact remote multisensing instrument for planetary surfaces and atmospheres characterization

M. Nurul Abedin, Arthur T. Bradley, Syed Ismail, Shiv K. Sharma, and Stephen P. Sandford  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3116-3126 (2013)
http://dx.doi.org/10.1364/AO.52.003116


View Full Text Article

Enhanced HTML    Acrobat PDF (1885 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a prototype feasibility demonstration system of a multipurpose Raman-fluorescence spectrograph and compact lidar system suitable for planetary sciences missions. The key measurement features of this instrument are its abilities to: i) detect minerals and organics at low levels in the dust constituents of surface, subsurface material and rocks on Mars, ii) determine the distribution of trace fluorescent ions with time-resolved fluorescence spectroscopy to learn about the geological conditions under which these minerals formed, iii) inspect material toxicity from a mobile robotic platform during local site characterization, iv) measure dust aerosol and cloud distributions, v) measure near-field atmospheric carbon dioxide, and vi) identify surface CO2-ice, surface water ice, and surface or subsurface methane hydrate. This prototype instrument and an improved follow-on design are described and have the capability for scientific investigations discussed above, to remotely investigate geological processes from a robotic platform at more than a 20-m radial distance with potential to go beyond 100 m. It also provides single wavelength (532 nm) aerosol/cloud profiling over very long ranges (>10km with potential to 20 km). Measurement results obtained with this prototype unit from a robotic platform and calculated potential performance are presented in this paper.

© 2013 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(130.0250) Integrated optics : Optoelectronics
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6450) Spectroscopy : Spectroscopy, Raman
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 23, 2013
Manuscript Accepted: March 20, 2013
Published: May 7, 2013

Citation
M. Nurul Abedin, Arthur T. Bradley, Syed Ismail, Shiv K. Sharma, and Stephen P. Sandford, "Compact remote multisensing instrument for planetary surfaces and atmospheres characterization," Appl. Opt. 52, 3116-3126 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-14-3116


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. K. Sharma, “Applications of advanced Raman techniques in earth sciences,” Vib. Spectra Struct. 17B, 513–568 (1989).
  2. A. Wang, J. Han, L. Guo, J. Yu, and P. Zeng, “Database of stand Raman spectra of minerals and related inorganic crystals,” Appl. Spectrosc. 48, 959–968 (1994). [CrossRef]
  3. I. A. Degen and G. A. Newman, “Raman spectra of inorganic ions,” Spectrochim. Acta 49, 859–887 (1993). [CrossRef]
  4. R. W. Gauldie, S. K. Sharma, and E. Volk, “Micro-Raman spectra of Vaterite and Aragonite otoliths of Coho Salmon, Oncorhynchus kisutch,” Comp. Biochem. Physiol., Part B, Biochem. Mol. Biol. 119A, 753–757 (1997). [CrossRef]
  5. S. K. Sharma and J. P. Urmos, “Micro-Raman spectroscopic studies of materials at ambient and high-pressures with CW and pulsed lasers,” in Microbeam Analysis, R. H. Geiss, ed. (San Francisco Press, 1987), pp. 133–136.
  6. M. J. Taylor and E. Whalley, “Raman spectra of ices Ih, Ic, II, II, and V,” J. Chem. Phys. 40, 1660–1664 (1964). [CrossRef]
  7. F. Pauer and J. Kipfstuhl, “Raman spectroscopic study on the nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core,” Geophys. Res. Lett. 22, 969–971 (1995). [CrossRef]
  8. T. Hirschfeld, “Range independence of signal in variable focus remote Raman spectrometry,” Appl. Opt. 13, 1435–1437 (1974). [CrossRef]
  9. S. M. Angel, T. J. Kulp, and T. M. Vess, “Remote Raman spectroscopy at intermediate ranges using low-power cw lasers,” Appl. Spectrosc. 46, 1085–1091 (1992). [CrossRef]
  10. P. G. Lucey, T. F. Cooney, and S. K. Sharma, “A remote Raman analysis system for planetary landers,” in 29th Lunar and Planetary Science Conference, Houston, TX, 16–20 March (1998), Lunar Planet. Sci. XXIX, Abstract #1354.
  11. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769–775 (2005). [CrossRef]
  12. S. K. Sharma, A. K. Misra, P. G. Lucey, S. M. Angel, and C. P. McKay, “Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters,” Appl. Spectrosc. 60, 871–876 (2006). [CrossRef]
  13. M. Wu, M. Ray, K. H. Fung, M. W. Ruckman, D. Harder, and A. J. Sedlacek, “Stand-off detection of chemicals by UV Raman spectroscopy,” Appl. Spectrosc. 54, 800–806 (2000). [CrossRef]
  14. R. M. Measures, Laser Remote Sensing: Fundamental and Applications (Krieger, 1992), p. 208.
  15. C. S. Stevenson and T. Vo-Dinh, “Analysis of polycyclic aromatic compounds using laser-induced synchronous luminescence,” Anal. Chim. Acta 303, 247–253 (1995). [CrossRef]
  16. C. S. Garcia, M. N. Abedin, S. Ismail, S. K. Sharma, A. K. Misra, T. Nguyen, and H. Elsayed-Ali, “Studies of minerals, organic and biogenic materials through time-resolved Raman spectroscopy,” Proc. SPIE 6943, 694301 (2008).
  17. M. D. Smith, “TES limb-geometry observations of aerosols,” in Sixth International Conference on Mars, Pasadena, California, 20–25 July (2003).
  18. R. T. Clancy, M. J. Wolff, B. A. Whitney, B. A. Cantor, and M. D. Smith, “Mars equatorial mesospheric clouds: global occurrence and physical properties from Mars global surveyor TES and MOC limb observations,” J. Geophys. Res. (Planet) 112, E04004 (2007). [CrossRef]
  19. J.-L. Bertaux, O. Korablev, D. Fonteyn, S. Guibert, E. Chassefiere, F. Lefevre, E. Dimarellis, J. P. Dubois, A. Hauchecorne, M. Cabane, P. Rannou, A. C. Levasseur-Regourd, G. Cernogora, E. Quemerais, C. Hermans, G. Kockarts, C. Lippens, M. De Maziere, D. Moreau, C. Muller, E. Neefs, P. C. Simon, F. Forget, F. Hourdin, O. Talagrand, V. I. Moroz, A. Rodin, B. Sandel, and A. Stern, “Global structure and composition of the Martian atmosphere with SPICAM on Mars Express,” Adv. Space Res. 35, 31–36 (2005). [CrossRef]
  20. J. Whiteway, M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, and C. Cook, “Lidar on the Phoenix mission to Mars,” J. Geophys. Res. 113, E00A08 (2008). [CrossRef]
  21. J. A. Whiteway, L. Komguem, C. Dickinson, C. Cook, M. Illnicki, J. Seabrook, V. Popovici, T. J. Duck, R. Davy, P. A. Taylor, J. Pathak, D. Fisher, A. I. Carswell, M. Daly, V. Hipkin, A. P. Zent, M. H. Hecht, S. E. Wood, L. K. Lamppari, N. Renno, J. E. Moores, L. T. Lemmon, F. Daerden, and P. H. Smith, “Mars water-ice clouds and precipitation,” Science 325, 68–70 (2009). [CrossRef]
  22. C. S. Garcia, M. N. Abedin, S. Ismail, S. K. Sharma, A. K. Misra, S. P. Sandford, and H. Elsayed-Ali, “Design and build a compact Raman sensor for identification of chemical composition,” Proc. SPIE 7312, 731210 (2009). [CrossRef]
  23. S. K. Sharma, A. K. Misra, T. E. Acosta, P. G. Lucey, and M. N. Abedin, “Compact time-resolved remote Raman system for detection of anhydrous and hydrous minerals and ices for planetary exploration,” Proc. SPIE 7691, 76910F (2010). [CrossRef]
  24. M. N. Abedin, C. S. Garcia, T. F. Refaat, S. Ismail, A. T. Bradley, S. K. Sharma, A. K. Misra, B. Robinson, and J. Hibberd, “Compact remote Raman, fluorescence, and lidar multi-sensor instrument for characterization of planetary surfaces and atmosphere from robotic platform,” in 42nd Lunar and Planetary Science Conference, Woodlands, Texas, 7–11 March 2011, paper 2298.
  25. S. M. Angel, N. R. Gomer, S. K. Sharma, and C. McKay, “Remote Raman spectroscopy for planetary exploration: a review,” Appl. Spectrosc. 66, 137–150 (2012). [CrossRef]
  26. M. N. Abedin, C. S. Garcia, S. K. Sharma, A. Misra, S. Ismail, U. N. Singh, and M. J. Gazarik, “Remote Raman investigation of mixed minerals,” in 7th International Conference on Raman Spectroscopy Applied to Earth and Planetary Sciences, GEORAMAN 2006 (Universidad de Valladolid, 2006).
  27. C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006). [CrossRef]
  28. C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, S. P. Sandford, and H. Elsayed-Ali, “Remote Raman sensor system for testing of rocks and minerals,” Proc. SPIE 6538, 6538-1I (2007). [CrossRef]
  29. S. K. Sharma, S. M. Angel, M. Ghosh, H. W. Hubble, and P. G. Lucey, “A remote pulsed-laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters,” Appl. Spectrosc. 56, 699–705 (2002). [CrossRef]
  30. S. K. Sharma, P. G. Lucey, M. Ghosh, H. W. Hubble, and K. A. Horton, “Stand-off Raman spectroscopic detection of minerals on planetary surfaces,” Spectrochim. Acta A 59, 2391–2407 (2003). [CrossRef]
  31. A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed remote Raman system for daytime measurements of mineral spectra,” Spectrochim. Acta A 61, 2281–2287 (2005). [CrossRef]
  32. A. Wang, J. J. Freeman, B. L. Jolliff, and I.-M. Chou, “Sulfates on Mars: a systematic Raman spectroscopic study of hydration states of magnesium sulfates,” Geochim. Cosmochim. Acta 70, 6118–6135 (2006). [CrossRef]
  33. S. K. Sharma, A. K. Misra, T. E. Acosta, P. G. Lucey, and M. N. Abedin, “Compact time-resolved remote Raman system for detection of anhydrous and hydrous minerals and ices for planetary exploration,” Proc. SPIE 7691, 76910F (2010). [CrossRef]
  34. M. N. Abedin, J. Hibberd, T. F. Refaat, A. T. Bradley, S. Ismail, B. Robinson, J. Mau, S. K. Sharma, A. K. Misra, and S. P. Sandford, “Planetary surfaces and atmosphere characterization from robotic platform using remote Raman, fluorescence, and lidar instrument,” in Geological Society of America Annual Meeting, Minneapolis, MN, 9–12 October 2011, p. 599.
  35. M. N. Abedin, A. T. Bradley, J. Hibberd, T. F. Refaat, S. Ismail, S. K. Sharma, A. K. Misra, C. S. Garcia, J. Mau, and S. P. Sandford, “Planetary surfaces and atmosphere characterization using combined Raman, fluorescence, and lidar instrument from rovers and landers,” in Lunar and Planetary Science Conference, Vol. 43 of Lunar Planetary Science Conference Series (Lunar and Planetary Institute, 2012), paper , 1219.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited