OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3134–3146

3D phase-shifting fringe projection system on the basis of a tailored free-form mirror

Susanne Zwick, Stefan Heist, Ralf Steinkopf, Sandra Huber, Sylvio Krause, Christian Bräuer-Burchardt, Peter Kühmstedt, and Gunther Notni  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3134-3146 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1932 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase-shifting fringe projection is an effective method to perform 3D shape measurements. Conventionally, fringe projection systems utilize a digital projector that images fringes into the measurement plane. The performance of such systems is limited to the visible spectral range, as most projectors experience technical limitations in UV or IR spectral ranges. However, for certain applications these spectral ranges are of special interest. We present a wideband fringe projector that has been developed on the basis of a picture generating beamshaping mirror. This mirror generates a sinusoidal fringe pattern in the measurement plane without any additional optical elements. Phase shifting is realized without any mechanical movement by a multichip LED. As the system is based on a single mirror, it is wavelength-independent in a wide spectral range and therefore applicable in UV and IR spectral ranges. We present the design and a realized setup of this fringe projection system and the characterization of the generated intensity distribution. Experimental results of 3D shape measurements are presented.

© 2013 Optical Society of America

OCIS Codes
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(150.2950) Machine vision : Illumination
(150.6910) Machine vision : Three-dimensional sensing
(150.3045) Machine vision : Industrial optical metrology

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: December 12, 2012
Revised Manuscript: February 25, 2013
Manuscript Accepted: April 2, 2013
Published: May 2, 2013

Susanne Zwick, Stefan Heist, Ralf Steinkopf, Sandra Huber, Sylvio Krause, Christian Bräuer-Burchardt, Peter Kühmstedt, and Gunther Notni, "3D phase-shifting fringe projection system on the basis of a tailored free-form mirror," Appl. Opt. 52, 3134-3146 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Chen and G. M. Brown, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000). [CrossRef]
  2. R. Kowarschik, P. Kühmstedt, J. Gerber, W. Schreiber, and G. Notni, “Adaptive optical three-dimensional measurement with structured light,” Opt. Eng. 39, 150–158 (2000). [CrossRef]
  3. P. Kühmstedt, C. Munckelt, M. Heinze, C. Bräuer-Burchardt, and G. Notni, “3D shape measurement with phase correlation based fringe projection,” Proc. SPIE 6616, 66160B (2007). [CrossRef]
  4. M. Brennesholtz and E. Stupp, Projection Displays, 2nd ed. (Wiley, 2008).
  5. R. Brodbelt, W. O’Brien, P. Fan, J. Frazer-Dib, and R. Yu, “Translucency of human dental enamel,” J. Dent. Res. 60, 1749–1753 (1981). [CrossRef]
  6. S. Zwick, P. Kühmstedt, and G. Notni, “Phase-shifting fringe projection system using freeform optics,” Proc. SPIE 8169, 81690W (2011). [CrossRef]
  7. T. M. Kreis, J. Geldmacher, and W. P. O. Jüptner, “Phasenschiebe-Verfahren in der interferometrischen Messtechnik: Ein Vergleich,” in Laser in der Technik, W. Waidelich, ed. (Springer, 1993), pp. 119–126.
  8. C. Bräuer-Burchardt, M. Möller, C. Munkelt, M. Heinze, P. Kühmstedt, and G. Notni, “Determining exact point correspondences in 3D measurement systems using fringe projection—concepts, algorithms, and accuracy determination,” in Applied Measurement Systems, Z. Haq, ed. (InTech, 2012), pp. 211–228.
  9. K. Kinnstaetter, A. W. Lohmann, J. Schwider, and N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082–5089 (1988). [CrossRef]
  10. W. Schreiber and G. Notni, “Theory and arrangements of self-calibrating whole-body three-dimensional measurement systems using fringe projection technique,” Opt. Eng. 39, 159–169 (2000). [CrossRef]
  11. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. (Cambridge, 2004).
  12. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier, 2005).
  13. H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A 19, 590–595 (2002). [CrossRef]
  14. D. Michaelis, S. Kudaev, R. Steinkopf, A. Gebhardt, P. Schreiber, and A. Bräuer, “Incoherent beam shaping with freeform mirror,” Proc. SPIE 7059, 705905 (2008). [CrossRef]
  15. M. Kurz, D. Oberschmidt, N. Siedow, R. Feßler, and J. Jegorovs, “Mit schnellem Algorithmus zur perfekten Freiformoptik,” Mikroproduktion 3, 10–12 (2009).
  16. D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett. 36, 918–920 (2011). [CrossRef]
  17. S. Zwick, R. Feßler, J. Jegorov, and G. Notni, “Resolution limitations for tailored picture-generating freeform surfaces,” Opt. Express 20, 3642–3653 (2012). [CrossRef]
  18. S. Zwick, S. Heist, Y. Franzl, R. Steinkopf, P. Kühmstedt, and G. Notni, “3D measurement system on the basis of a tailored free-form mirror,” Proc. SPIE 8494, 84940F (2012). [CrossRef]
  19. S. Zwick, R. Feßler, J. Jegorov, and G. Notni, “Wave-optical formation of the intensity distribution and diffraction limit of picture-generating freeform surfaces,” Proc. SPIE 8429, 842913 (2012). [CrossRef]
  20. H. Lindner, H. Brauer, and C. Lehmann, Taschenbuch der Elektrotechnik und Elektronik, 9th ed. (Hanser, 2008).
  21. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002). [CrossRef]
  22. H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two projections,” Nature 293, 133–135(1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited