Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Acquisition probability analysis of ultra-wide FOV acquisition scheme in optical links under impact of atmospheric turbulence

Not Accessible

Your library or personal account may give you access

Abstract

Reliable data transmission in optical wireless communication is on the premise of the successful establishment of the optical link. In this paper, we propose an ultra-wide field-of-view (FOV) acquisition scheme, which combines the fisheye lens and Voigt anomalous dispersion optical filter (VADOF) to achieve rapid establishment of wireless optical links. Furthermore, the ultra-wide FOV signal-receiving model for this acquisition scheme is presented to analyze the receiving performance. This acquisition scheme utilizes the fisheye lens to obtain the ultra-wide FOV, not only simplifying the system architecture of the spatial acquisition, but also reducing the acquisition time; a VADOF with ultra-narrow-pass bandwidth is adopted to resist the strong background radiation induced by the ultra-wide FOV. For this ultra-wide FOV acquisition scheme, the mathematical model of long-term average acquisition probability (LTAAP) is derived based on the gamma–gamma (GG) distribution. In an atmospheric turbulence environment, the average signal count and the acquisition probability are both random variables; therefore, the probability density of the average signal count needs to be considered and LTAAP can be calculated based on the GG distribution. Comprehensive analysis and numerical results of the key parameters of this ultra-wide FOV acquisition scheme, such as LTAAP, false-alarm probability, signal-to-noise ratio, incident angle of beam, scintillation index, and acquisition threshold, provide an advantageous basis for the actual spatial acquisition system.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Aperture-array acquisition scheme for optical links in atmospheric turbulence

Xuelian Ma, Lu Liu, Xiaoning Zhang, and Junxiong Tang
Appl. Opt. 49(4) 718-723 (2010)

Prediction of data stream parameters in atmospheric turbulent wireless communication links

A. Tiker, N. Yarkoni, N. Blaunstein, A. Zilberman, and N. Kopeika
Appl. Opt. 46(2) 190-199 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved