OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3172–3177

Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems

Robert D. Niederriter, Alexander M. Watson, Ramzi N. Zahreddine, Carol J. Cogswell, Robert H. Cormack, Victor M. Bright, and Juliet T. Gopinath  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3172-3177 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.

© 2013 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(230.4685) Optical devices : Optical microelectromechanical devices
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Optical Design and Fabrication

Original Manuscript: February 19, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 10, 2013
Published: May 7, 2013

Robert D. Niederriter, Alexander M. Watson, Ramzi N. Zahreddine, Carol J. Cogswell, Robert H. Cormack, Victor M. Bright, and Juliet T. Gopinath, "Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems," Appl. Opt. 52, 3172-3177 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000). [CrossRef]
  2. S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004). [CrossRef]
  3. F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006). [CrossRef]
  4. N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009). [CrossRef]
  5. I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007). [CrossRef]
  6. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006). [CrossRef]
  7. L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010). [CrossRef]
  8. Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.
  9. J. T. Gopinath, V. M. Bright, C. C. Cogswell, R. D. Niederriter, A. Watson, R. Zahreddine, and R. H. Cormack, “Simulation of electrowetting lens and prism arrays for wavefront compensation,” Appl. Opt. 51, 6618–6623 (2012). [CrossRef]
  10. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005). [CrossRef]
  11. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990). [CrossRef]
  12. A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009). [CrossRef]
  13. M. J. Madou, Fundamentals of Microfabrication (CRC Press, 2002).
  14. P. Concus and R. Finn, “On the behavior of a capillary surface in a wedge,” Proc. Natl. Acad. Sci. USA 63, 292–299 (1969). [CrossRef]
  15. S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517–524 (2006). [CrossRef]
  16. J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.
  17. C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004). [CrossRef]
  18. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006). [CrossRef]
  19. P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997). [CrossRef]
  20. F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17, 1501–1512 (2008). [CrossRef]
  21. S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008). [CrossRef]
  22. Holographix, LLC.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited