OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3221–3228

Spatial coherence of broad-area laser diodes

Henri Partanen, Jani Tervo, and Jari Turunen  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3221-3228 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We model the spatial coherence of broad-area laser diodes (BALDs) by representing the mutual intensity as superpositions of individually fully coherent but mutually uncorrelated fields. Consideration of spectroscopic modal structure measurements and intensity-based mode recovery shows that the standard Mercer-type coherent-mode expansion can lead to unsatisfactory results for real BALDs. However, we show that a so-called shifted elementary-field method provides a sufficiently accurate tool for spatial coherence and propagation modeling even if the modal structure of the BALD is severely distorted.

© 2013 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 11, 2013
Manuscript Accepted: April 5, 2013
Published: May 3, 2013

Henri Partanen, Jani Tervo, and Jari Turunen, "Spatial coherence of broad-area laser diodes," Appl. Opt. 52, 3221-3228 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541–546 (1984). [CrossRef]
  2. T. Saastamoinen, J. Turunen, J. Tervo, T. Setälä, and A. T. Friberg, “Electromagnetic coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 22, 103–108 (2005). [CrossRef]
  3. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  4. J. Turunen, E. Tervonen, and A. T. Friberg, “Coherence-theoretic algorithm to determine the transverse mode structure of lasers,” Opt. Lett. 14, 627–629 (1989). [CrossRef]
  5. E. Tervonen, J. Turunen, and A. T. Friberg, “Transverse mode structure determination from spatial coherence measurements: experimental results,” Appl. Phys. B 49, 409–414 (1989). [CrossRef]
  6. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “Intensity-based modal analysis for partially coherent beams with Hermite–Gaussian modes,” Opt. Lett. 23, 989–991 (1998). [CrossRef]
  7. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, “Evaluation of the modal structure for light beams with Hermite–Gaussian modes,” Appl. Opt. 38, 5272–5281 (1999). [CrossRef]
  8. R. Borghi, G. Piquero, and M. Santarsiero, “Use of biorthogonal functions for the modal decomposition of multimode beams,” Opt. Commun. 194, 235–242 (2001). [CrossRef]
  9. R. Borghi, G. Guattari, F. de la Torre, F. Gori, and M. Santarsiero, “Evaluation of the spatial coherence of a light beam through transverse intensity measurements,” J. Opt. Soc. Am. A 20, 1763–1770 (2003). [CrossRef]
  10. N. Stelmakh and M. Flowers, “Measurement of spatial modes of broad-area diode lasers with 1 GHz resolution grating spectrometer,” IEEE Photon. Technol. Lett. 18, 1618–1620 (2006). [CrossRef]
  11. N. Stelmakh, “Harnessing multimode broad-area laser-diode emission into a single-lobe diffraction-limited spot,” IEEE Photon. Technol. Lett. 19, 1392–1394 (2007). [CrossRef]
  12. F. Gori and C. Palma, “Partially coherent sources which give rise to highly directional fields,” Opt. Commun. 27, 185–188 (1978). [CrossRef]
  13. F. Gori, “Directionality and partial coherence,” Opt. Acta 27, 1025–1034 (1980). [CrossRef]
  14. P. Vahimaa and J. Turunen, “Finite-elementary-source model for partially coherent radiation,” Opt. Express 14, 1376–1381 (2006). [CrossRef]
  15. J. Tervo, J. Turunen, P. Vahimaa, and F. Wyrowski, “Shifted-elementary-mode representation for partially coherent vectorial fields,” J. Opt. Soc. Am. A 27, 2004–2014 (2010). [CrossRef]
  16. J. Turunen, “Elementary-field representations in partially coherent optics,” J. Mod. Opt. 58, 509–527 (2011). [CrossRef]
  17. A. Greynolds, “Propagation of generally astigmatic Gaussian beams along skew ray paths,” Proc. SPIE 560, 33–50 (1985). [CrossRef]
  18. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  19. P. Spano, “Connection between spatial coherence and mode structure in optical fibers and semiconductor lasers,” Opt. Commun. 33, 265–270 (1980). [CrossRef]
  20. F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980). [CrossRef]
  21. J. W. Goodman, Statistical Optics (Wiley, 1985).
  22. J. Turunen and P. Vahimaa, “Independent-elementary-field model for three-dimensional spatially partially coherent sources,” Opt. Express 16, 6433–6442 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited