OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3229–3233

Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface

Sun-Goo Lee and Chul-Sik Kee  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3229-3233 (2013)
http://dx.doi.org/10.1364/AO.52.003229


View Full Text Article

Enhanced HTML    Acrobat PDF (682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report that self-collimated beams from a photonic crystal can be refracted to any direction in air by introducing an additional layer composed of dielectric rods at a photonic crystal surface. The refraction angle can be tuned from negative to positive value by adjusting the period of the additional layer. The refracted beam power can be also controllable by varying the radii of rods in the layer and the distance between the layer and the surface. The grating-induced omnidirectional refraction of self-collimated beams could provide an efficient way to manipulate light propagation and increase the possibility of application of self-collimated beams.

© 2013 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(240.0240) Optics at surfaces : Optics at surfaces
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 23, 2013
Revised Manuscript: February 28, 2013
Manuscript Accepted: April 3, 2013
Published: May 3, 2013

Citation
Sun-Goo Lee and Chul-Sik Kee, "Grating-induced omnidirectional refraction of self-collimated beams at a photonic crystal surface," Appl. Opt. 52, 3229-3233 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-14-3229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  2. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006). [CrossRef]
  3. Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006). [CrossRef]
  4. S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011). [CrossRef]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  6. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  7. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, “Refraction in media with a negative refractive index,” Phys. Rev. Lett. 90, 107402 (2003). [CrossRef]
  8. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 235107 (2003). [CrossRef]
  9. W. Jiang, R. Chen, and X. Lu, “Theory of light refraction at the surface of a photonic crystal,” Phys. Rev. B 71, 245115 (2005). [CrossRef]
  10. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096–10099 (1998). [CrossRef]
  11. K. B. Chung and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549–1551 (2002). [CrossRef]
  12. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  13. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003). [CrossRef]
  14. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005). [CrossRef]
  15. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010). [CrossRef]
  16. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry–Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010). [CrossRef]
  17. S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, C.-S. Kee, and , “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012). [CrossRef]
  18. X. Yu and S. Fan, “Anomalous reflections at photonic crystal surfaces,” Phys. Rev. E 70, 055601 (2004). [CrossRef]
  19. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  20. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 181, 173–190 (2001). [CrossRef]
  21. A. F. Matthews and Y. S. Kivshar, “Experimental studies of the internal Goos–Hanchen shift for self-collimated beams in two-dimensional microwave photonic crystals,” Appl. Phys. Lett. 93, 131901 (2008). [CrossRef]
  22. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  23. S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008). [CrossRef]
  24. T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009). [CrossRef]
  25. W. Dai and C. M. Soukoulis, “Converging and wave guiding of Gaussian beam by two-layer dielectric rods,” Appl. Phys. Lett. 93, 201101 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited