OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3241–3245

Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system

Sijing Chen, Dengkuan Liu, Wenxing Zhang, Lixing You, Yuhao He, Weijun Zhang, Xiaoyan Yang, Guang Wu, Min Ren, Heping Zeng, Zhen Wang, Xiaoming Xie, and Mianheng Jiang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3241-3245 (2013)
http://dx.doi.org/10.1364/AO.52.003241


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a time-correlated single-photon counting (TCSPC) system based on the low-jitter superconducting nanowire single-photon detection (SNSPD) technology. The causes of jitters in the TCSPC system were analyzed. Owing to the low jitter of the SNSPD technology, a system jitter of 26.8 ps full width at half-maximum was achieved after optimizing the system. We demonstrated time-of-flight laser ranging at 1550 nm wavelength at a standoff distance of 115 m based on this TCSPC system. A depth resolution of 4 mm was achieved directly by locating the centroids of each of the two return signals. Laser imaging was also performed using the TCSPC system. This low-jitter TCSPC system using the SNSPD technology presents great potential in long-range measurements and imaging applications for low-energy-level and eye-safe laser systems.

© 2013 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.3780) Detectors : Low light level
(280.3400) Remote sensing and sensors : Laser range finder

ToC Category:
Detectors

History
Original Manuscript: February 11, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: April 11, 2013
Published: May 3, 2013

Citation
Sijing Chen, Dengkuan Liu, Wenxing Zhang, Lixing You, Yuhao He, Weijun Zhang, Xiaoyan Yang, Guang Wu, Min Ren, Heping Zeng, Zhen Wang, Xiaoming Xie, and Mianheng Jiang, "Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system," Appl. Opt. 52, 3241-3245 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-14-3241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Wlillad, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671–7678 (2002). [CrossRef]
  2. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and devaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063–1070 (2002). [CrossRef]
  3. R. E. Warburton, A. McCarthy, A. M. Wallace, S. H. Marin, S. Cova, R. A. Lamb, and G. S. Buller, “Enhanced performance photon-counting time-of-flight sensor,” Opt. Express 15, 423–429 (2007). [CrossRef]
  4. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48, 6241–6251 (2009). [CrossRef]
  5. For example, the commercial Hamamatsu PMT R3809U-50 can give a timing jitter of 25 ps FWHM for the operation wavelength of 160–850 nm ( http://www.hamamatsu.com/ ).
  6. D. Vyhlidal, M. Jelinek, M. Cech, and V. Kubecek, “Performance evaluation of fast, high precision laser range finder electronics with a pulsed laser,” Proc. SPIE 8306, 8306D (2011).
  7. R. Richmond, R. Stettner, and J. Glessner, “Eye safe laser radar focal plane array for three-dimensional imaging,” Proc. SPIE 4035, 172–178 (2000). [CrossRef]
  8. M. Ren, X. R. Gu, Y. Liang, W. B. Kong, E. Wu, G. Wu, and H. P. Zeng, “Laser ranging at 1550 nm with 1 GHz sine-wave gated InGaAs/InP APD single-photon detector,” Opt. Express 19, 13497–13502 (2011). [CrossRef]
  9. M. A. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F. Zappa, and S. Cova, “Advances in InGaAsP-based avalanche diode single photon detectors,” J. Mod. Opt. 58, 174–200 (2011). [CrossRef]
  10. A. Tosi, F. Acerbi, M. Anti, and F. Zappa, “InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail,” IEEE J. Quantum Electron. 48, 1227–1232 (2012). [CrossRef]
  11. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012). [CrossRef]
  12. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013). [CrossRef]
  13. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013). [CrossRef]
  14. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266–2268 (2007). [CrossRef]
  15. Q. Zhao, L. Zhang, T. Jia, L. Kang, W. Xu, J. Chen, and P. Wu, “Intrinsic timing jitter of superconducting nanowire single-photon detectors,” Appl. Phys. B 104, 673–678 (2011). [CrossRef]
  16. R. A. Lamb, “A technology review of time-of-flight photon counting for advanced remote sensing,” Proc. SPIE 7681, 768107 (2010). [CrossRef]
  17. W. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embeded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012). [CrossRef]
  18. H. Terai, T. Yamashita, S. Miki, K. Makise, and Z. Wang, “Low-jitter single flux quantum signal readout from superconducting single photon detector,” Opt. Express 20, 20115–20123 (2012). [CrossRef]
  19. A. Verevkin, A. Pearlman, W. Slysz, J. Zhang, M. Currie, A. Korneev, G. Chulkova, O. Okunev, P. Kouminov, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications,” J. Mod. Opt. 51, 1447–1458 (2004).
  20. W. Slysz, M. W. Grzecki, J. Bar, P. Grabiec, M. Gorska, V. Zwiller, C. Latta, P. Bohi, A. J. Pearlman, A. S. Cross, D. Pan, J. Kitaygorsky, I. Komissarov, A. Verevkin, I. Milostnaya, A. Korneev, O. Minayeva, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, and R. Sobolewski, “Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications,” J. Mod. Opt. 54, 315–326 (2007). [CrossRef]
  21. A. Pearlman, A. Cross, W. Slysz, J. Zhang, A. Verevkin, M. Currie, A. Korneev, P. Kouminov, K. Smirnov, B. Voronov, G. Gol’tsman, and R. Sobolewski, “Gigahertz counting rates of NbN single-photon detectors for quantum communications,” IEEE Trans. Appl. Supercond. 15, 579–582 (2005). [CrossRef]
  22. M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008). [CrossRef]
  23. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Hubers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single photon detectors with different thickness,” J. Appl. Phys. 108, 014507 (2010). [CrossRef]
  24. For more details about SPC-130, please refer to http://www.becker-hickl.de/_vti_bin/shtml.exe/handbook.htm .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited