OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3269–3278

Studies on the spectral purity of copper–hydrogen bromide laser radiations

Ramakanta Biswal, Govind Kumar Mishra, Praveen Kumar Agrawal, Shankar V. Nakhe, and Sudhir Kumar Dixit  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3269-3278 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (878 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents, for the first time to the best of our knowledge, the linewidth, frequency, and stability characteristics of a copper-HBr laser. These spectral purity attributes were found to be critically linked with the electrical input power and HBr concentration, unlike that of the optical resonator. Variation in green and yellow radiation linewidths from 4 to 4.5 GHz and from 6.5 to 8.8 GHz, linewidth fluctuations from 50 to 150 MHz and from 60 to 530 MHz as well as frequency fluctuations from 10 to 100 MHz and from 410 to 10 MHz were observed when varying the input power and HBr concentration. These results are comprehensively analyzed in terms of isotopic shift, hyperfine splitting, line broadening, and temperature and gain distribution effects relevant to this laser.

© 2013 Optical Society of America

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3295) Lasers and laser optics : Laser beam characterization
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 20, 2012
Revised Manuscript: February 21, 2013
Manuscript Accepted: March 19, 2013
Published: May 6, 2013

Ramakanta Biswal, Govind Kumar Mishra, Praveen Kumar Agrawal, Shankar V. Nakhe, and Sudhir Kumar Dixit, "Studies on the spectral purity of copper–hydrogen bromide laser radiations," Appl. Opt. 52, 3269-3278 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. S. Livingstone, D. R. Jones, A. Maitland, and C. E. Little, “Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas,” Opt. Quantum Electron. 24, 73–82 (1992). [CrossRef]
  2. D. R. Jones, N. V. Sabotinov, A. Maitland, and C. E. Little, “A high-power high-efficiency Cu-Ne-HBr (λ=510.6, 578.2 nm) laser,” Opt. Commun. 94, 289–299 (1992). [CrossRef]
  3. D. R. Jones, A. Maitland, and C. E. Little, “A high efficiency 200 W average power copper HyBrID laser,” IEEE J. Quantum Electron. 30, 2385–2390 (1994). [CrossRef]
  4. N. V. Sabotinov, F. Akerboom, D. R. Jones, A. Maitland, and C. E. Little, “A copper HyBrID laser with 2  W/cm3 specific average output power,” IEEE J. Quantum Electron. 31, 747–753 (1995). [CrossRef]
  5. R. P. Mildren, D. R. Jones, and D. J. W. Brown, “A 100 W, near diffraction limited copper HyBrID laser oscillator,” J. Phys. D 31, 1812–1816 (1998). [CrossRef]
  6. E. L. Guyadec, P. Coutance, G. Bertrand, and C. Peltier, “A 280 W average power Cu-Ne-HBr laser amplifier,” IEEE J. Quantum Electron. 35, 1616–1622 (1999). [CrossRef]
  7. D. J. W. Brown, C. G. Whyte, D. R. Jones, and C. E. Little, “High beam quality, high power copper HyBrID laser injection seeded oscillator system,” Opt. Commun. 137, 158–164 (1997). [CrossRef]
  8. C. E. Little, ed., Metal Vapour Lasers: Physics, Engineering and Applications (Wiley, 1999).
  9. C. E. Little and N. V. Sabotinov, eds., Pulsed Metal Vapour Lasers: Physics and Emerging Applications in Industry, Medicine and Science (Kluwer Academic, 1996).
  10. P. Jafarkhani, M. J. Torkamany, S. Dadras, A. Chehrghani, and J. Sabbaghzadeh, “Necklace shaped Au-Ag nano-alloys: laser-assisted synthesis and nonlinear optical properties,” Nanotechnology 22, 235703 (2011). [CrossRef]
  11. V. T. Karpuhin, M. M. Malikov, T. I. Borodina, G. E. Val’Yano, and O. A. Gololobova, “Investigation of the characteristics of a colloidal solution and its solid phase obtained through ablation of zinc in water by high-power radiation from a copper vapor laser,” High Temp. 49, 679–684 (2011). [CrossRef]
  12. Y. Liu, J. Li, Y. Gao, and X. Yuan, “Laser diagnostic investigation on the spray and combustion with butanol-biodiesel-diesel fuel blends,” Adv. Mater. Res. 443–444, 986–995 (2012). [CrossRef]
  13. M. S. Fernandes de Lima, F. P. Ladario, D. Nevesand, and A. E. Diniz, “Machining performance of laser micro-textured drilling tools,” Int. J. Surf. Sci. Eng. 5, 98–115 (2011). [CrossRef]
  14. A. A. Isaev, G. Y. Lemmerman, and G. L. Malafeeva, “Second harmonic generation from pulse copper vapor laser radiation,” Sov. J. Quantum Electron. 10, 983–985 (1980). [CrossRef]
  15. G. A. Ruff, L. P. Bernal, and G. M. Faeth, “High speed in-line holocinematography for dispersed phase dynamics,” Appl. Opt. 29, 4544–4546 (1990). [CrossRef]
  16. E. W. Eloranta, F. L. Roesler, and J. T. Sroga, “The high spectral resolution LIDAR,” in Optical and Laser Remote Sensing, D. K. Killinger and A. Mooradian, eds. (Springer, 2005), pp. 143–163.
  17. J. Tenenbaum, I. Smilanski, S. Gabay, L. A. Levin, G. Erez, and S. Lavi, “Structure of 510.6 and 578.2 nm copper laser lines,” Opt. Commun. 32, 473–477 (1980). [CrossRef]
  18. D. C. Gerstenberger, E. L. Latush, and G. J. Collins, “Doppler free laser spectroscopy of atomic copper in a hollow cathode discharge,” Opt. Commun. 31, 28–30 (1979). [CrossRef]
  19. N. Singh and H. S. Vora, “On the hyperfine spectral lines of an atomic copper vapor laser,” Opt. Commun. 282, 1393–1398 (2009). [CrossRef]
  20. W. Yube, M. Bangning, C. Li, W. Limin, and P. Bailiang, “Analysis of spectral structure of CuBr laser lines,” Opt. Commun. 278, 138–141 (2007). [CrossRef]
  21. W. Yongjiang, S. Shengpen, X. Tiejun, and W. Zhehua, “Spectral structure of CuBr vapour laser lines,” Appl. Phys. B 46, 191–195 (1988). [CrossRef]
  22. C. J. Chen, “Measurement of induced emission cross section and line broadening of copper laser lines 4p P3/22-4S D5/22 and 4p P1/22-4S D3/22,” Phys. Rev. A 18, 2192–2195 (1978). [CrossRef]
  23. WS-7 manual, http://www.highfinesse.com/en/wavelengthmeter/ws7.php .
  24. C. Reiser and P. Esherick, “Laser wavemeter with solid Fizeau wedge interferometer,” Opt. Lett. 13, 981–983 (1988). [CrossRef]
  25. O. Prakash, R. Mahakud, P. Saxena, V. K. Dubey, S. K. Dixit, and J. K. Mittal, “A study on the control of dye solution temperature on the line-width and wavelength stability of a copper vapour laser pumped single mode dye laser,” Opt. Commun. 283, 5099–5106 (2010). [CrossRef]
  26. G. K. Mishra, R. Biswal, S. Agrawal, O. Prakash, and S. K. Dixit, “Studies on 20 kHz pulse repetition rate class narrow line-width dye laser,” Optik (to be published), doc ID IJLEO 52323, (posted online 4August2012).
  27. R. Biswal, P. K. Agrawal, G. K. Mishra, S. K. Dixit, and S. V. Nakhe, “Analysis of pulsed discharge characteristics of solid state switch (IGBT) based 16 kHz repetition rate, 100 W average power Copper—HBr laser,” J. Russ. Laser Res. 33, 319–335 (2012). [CrossRef]
  28. N. M. Nerheim, “Measurements of copper ground state and metastable level population in a copper-chloride laser,” J. Appl. Phys. 48, 3244–3250 (1977). [CrossRef]
  29. W. C. Martin and W. L. Wiese, “Atomic spectroscopy,” http://www.nist.gov/pml/pubs/atspec/index.cfm .
  30. A. A. Isaev, “Spectral composition of stimulated radiation of a pulsed copper vapor laser,” in Metal Vapor and Metal Halide Vapor Lasers, G. G. Petrash, ed. (Nova Science, 1989), pp. 49–74.
  31. P. W. Milonni and J. H. Eberly, Laser Physics (Wiley, 2010).
  32. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977). [CrossRef]
  33. P. Coutance and J. P. Pique, “Radial and time-resolved measurement of cuprous bromide concentration in a Cu-HBr laser,” IEEE J. Quantum Electron. 34, 1340–1348 (1998). [CrossRef]
  34. F. Girard, E. L. Guyadec, and P. Delaporte, “CuH and CuBr absorption measurements and consequences on copper seeding in a Cu-HBr laser medium,” J. Appl. Phys. 89, 843–848 (2001). [CrossRef]
  35. R. Biswal, P. K. Agrawal, S. K. Dixit, and S. V. Nakhe, “A study on the purification of hydrogen bromide gas by fractional distillation technique and its effect on improvement of copper-hydrogen bromide laser performance,” Opt. Eng. 51, 114203 (2012). [CrossRef]
  36. R. J. Carman, D. J. W. Brown, and J. A. Piper, “A self consistent model for the discharge kinetics in a high repetition rate copper vapour laser,” IEEE J. Quantum Electron. QE-30, 1795–1876 (1994).
  37. “Atomic radii of the elements,” http://en.wikipedia.org .
  38. A. A. Isaev, D. R. Jones, C. E. Little, G. G. Petrash, C. G. Whyte, and K. Zemskov, “Characteristics of pulsed discharges in copper bromide and copper HyBrID lasers,” IEEE J. Quantum Electron. 33, 919–926 (1997). [CrossRef]
  39. R. Biswal, G. K. Mishra, G. S. Purbia, P. K. Agrawal, O. Prakash, S. K. Dixit, and J. K. Mittal, “A comparative study on thermal lensing characteristics of low (∼500°C) and high (∼1500°C) temperature variants of copper vapor laser,” Opt. Eng. 50, 084202 (2011). [CrossRef]
  40. F. A. Gubarev, V. O. Troitskiy, M. V. Trigub, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284, 2565–2568 (2011). [CrossRef]
  41. D. R. Jones, A. Maitland, and C. E. Little, “Radial and temporal laser pulse profiles in a 0.2 kW average power copper HyBrID laser,” Proc. SPIE 2118, 42–50 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited