OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3298–3304

Comparative research of multichannel slab and discharge tube CO2 lasers

Yonggen Xu, Shijian Wang, Qunchao Fan, and Zairu Ma  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3298-3304 (2013)
http://dx.doi.org/10.1364/AO.52.003298


View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The laser power and beam quality of the high-power CO2 laser are very important for laser applications. The multichannel slab discharge CO2 laser (MSDL) and the multichannel discharge tube CO2 laser (MDTL) are two main lasers, which have different functions. Two lasers and laser beams are compared and studied quantitatively from the following factors: intensity distribution, M2 factor, phase locking, misalignment, and output power. It is shown that MSDL could obtain the laser beam with high power when the misaligned angle is small, but the beam quality is poor in comparison with that of MDTL. MSDL is more sensitive to the misaligned angle than MDTL.

© 2013 Optical Society of America

OCIS Codes
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 31, 2012
Revised Manuscript: April 13, 2013
Manuscript Accepted: April 14, 2013
Published: May 7, 2013

Citation
Yonggen Xu, Shijian Wang, Qunchao Fan, and Zairu Ma, "Comparative research of multichannel slab and discharge tube CO2 lasers," Appl. Opt. 52, 3298-3304 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-14-3298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. F. Yelden, H. J. J. Seguin, C. E. Capjack, and S. K. Nikumb, “Multichannel slab discharge for CO2 laser excitation,” Appl. Phys. Lett. 58, 693–694 (1991). [CrossRef]
  2. E. F. Yelden, H. J. J. Seguin, C. E. Capjack, and H. Reshef, “Phase-locking phenomena in a radial multislot CO2 laser array,” J. Opt. Soc. Am. B 10, 1475–1482 (1993). [CrossRef]
  3. E. F. Yelden, H. J. J. Seguin, C. E. Capjack, and H. Reshef, “Phase locking in a multichannel radial array CO2 laser,” Appl. Phys. Lett. 62, 1311–1313 (1993). [CrossRef]
  4. H. J. J. Seguin, “Power scaling of diffusion-cooled lasers,” Opt. Laser Technol. 30, 331–336 (1998). [CrossRef]
  5. W. D. Bilida, J. D. Strohchein, H. J. J. Seguin, and C. E. Capjack, “Multi-channel slab CO2 laser excitation with resonant cavities,” Opt. Laser Technol. 28, 431–436 (1996). [CrossRef]
  6. E. F. Yelden, H. J. J. Seguin, C. E. Capjack, S. K. Nikumb, and H. Reshef, “Toric unstable CO2 laser resonator: an experimental study,” Appl. Opt. 31, 1965–1974 (1992). [CrossRef]
  7. J. Xin, W. Zhang, and W. Jiao, “Radio frequency discharge excited diffusively cooled kilowatt carbon monoxide slab waveguide laser with a three mirror resonator,” Appl. Phys. Lett. 75, 1369–1370 (1999). [CrossRef]
  8. Y. Li, J. Liu, M. Chen, J. Guo, Z. Li, and S. Ju, “Axisymmetric-fold combination laser resonator,” Opt. Eng. 44, 1–7 (2005). [CrossRef]
  9. J. Liu, Y. Li, J. Guo, M. Chen, Y. Yang, D. Xu, Z. Liu, and L. Zhang, “Research on near-field distributions of axisymmetric folded-combined CO2 laser,” Opt. Eng. 45, 1–10 (2006). [CrossRef]
  10. Y. Xu, Y. Li, T. Feng, Y. Qiu, F. Fu, and W. Guo, “Phase-locking principle of axisymmetric structural CO2 laser and theoretical study of the influences of parameters-changes on phase-locking,” J. Opt. Soc. Am. B 25, 1303–1311 (2008). [CrossRef]
  11. Y. Xu, Y. Li, T. Feng, and Y. Qiu, “Phase-locking of an axisymmetric-fold combination cavity CO2 laser using the back surface of the output-mirror,” J. Opt. A 11, 1–7(2009). [CrossRef]
  12. Y. Xu, Y. Li, B. Zhang, Y. Qiu, and T. Feng, “Phase-locking of the tunable two-dimensional axisymmetrical folded-combined CO2 laser,” Opt. Commun. 283, 1845–1848 (2010). [CrossRef]
  13. X. Liu, Y. Li, T. Yan, T. Feng, and S. Gao, “Experimental research on axisymmetrical-fold combination CO2 laser,” Opt. Commun. 281, 3553–3556 (2008). [CrossRef]
  14. T. Feng, Y. Li, X. Liu, T. Yan, and S. Gao, “Study of a three-dimensional axisymmetric-folded combination carbon dioxide laser with five discharge tubes,” Opt. Eng. 48, 1–3 (2009). [CrossRef]
  15. Y. Qiu, Y. Li, G. Feng, and Y. Xu, “Experimental proof on two-cone axisymmetric-folded combination CO2 laser,” Optik 123, 91–93 (2012). [CrossRef]
  16. B. Lü, and H. Ma, “Beam combination of a radial laser array: Hermite–Gaussian model,” Opt. Commun. 178, 395–403 (2000). [CrossRef]
  17. J. Li and C. Li, “Algorithm study of Collins formula and inverse Collins formula,” Appl. Opt. 47, A97–A102 (2008). [CrossRef]
  18. A. E. Siegman, “New developments in laser resonators,” Proc. SPIE 1224, 2–14 (1990). [CrossRef]
  19. Y. Xu, Y. Li, T. Feng, and Y. Qiu, “Principle of phase-locking of axisymmetric concentric cavity CO2 laser,” Optik 121, 1363–1369 (2010). [CrossRef]
  20. G. Wei and B. Zhu, Laser Beam Optics (Beijing Industry College, 1987), Chap. 3 (in Chinese).
  21. Y. Xu, Y. Li, B. Zhang, T. Feng, and Y. Qiu, “Theoretical study of misalignment analysis of the holophote and self-phase-locking of axisymmetrical-structural CO2 laser,” Opt. Lasers Eng. 47, 782–792 (2009). [CrossRef]
  22. Y. Xu and Y. Li, “Near field effect of output mirror misalignment in an axisymmetric folded and combined CO2 laser cavity,” Appl. Opt. 48, 5295–5300 (2009). [CrossRef]
  23. Y. Xu, Y. Li, B. Zhang, and Y. Qiu, “The influence of misalignment of an axisymmetrical folded-combined CO2laser on output power,” Opt. Laser Technol. 43, 555–558 (2011). [CrossRef]
  24. T. S. Fahlen, “CO2 laser design procedure,” Appl. Opt. 12, 2381–2390 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited