OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3311–3317

High-speed free-space quantum key distribution system for urban daylight applications

M. J. García-Martínez, N. Denisenko, D. Soto, D. Arroyo, A. B. Orue, and V. Fernandez  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3311-3317 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (483 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a free-space quantum key distribution system designed for high-speed key transmission in urban areas. Clocking the system at gigahertz frequencies and efficiently filtering background enables higher secure key rates than those previously achieved by similar systems. The transmitter and receiver are located in two separate buildings 300 m apart in downtown Madrid and they exchange secure keys at rates up to 1 Mbps. The system operates in full bright daylight conditions with an average secure key rate of 0.5 Mbps and 24 h stability without human intervention.

© 2013 Optical Society of America

OCIS Codes
(060.2605) Fiber optics and optical communications : Free-space optical communication
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: February 19, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 16, 2013
Published: May 7, 2013

M. J. García-Martínez, N. Denisenko, D. Soto, D. Arroyo, A. B. Orue, and V. Fernandez, "High-speed free-space quantum key distribution system for urban daylight applications," Appl. Opt. 52, 3311-3317 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, India (IEEE, 1984), pp. 175–179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992). [CrossRef]
  3. T. Schmitt-Manderbach, H. Weier, M. Furst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007). [CrossRef]
  4. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009). [CrossRef]
  5. E. Meyer-Scott, Z. Yan, A. MacDonald, J.-P. Bourgoin, H. Hübel, and T. Jennewein, “How to implement decoy-state quantum key distribution for a satellite uplink with 50 dB channel loss,” Phys. Rev. A 84, 062326 (2011). [CrossRef]
  6. J. L. Duligall, M. S. Godfrey, K. A. Harrison, W. J. Munro, and J. G. Rarity, “Low cost and compact quantum key distribution,” New J. Phys. 8, 249 (2006). [CrossRef]
  7. D. M. Benton, P. M. Gorman, P. R. Tapster, and D. M. Taylor, “A compact free space quantum key distribution system capable of daylight operation,” Opt. Commun. 283, 2465–2471 (2010). [CrossRef]
  8. M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” New J. Phys. 11, 045007 (2009). [CrossRef]
  9. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43 (2002). [CrossRef]
  10. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009). [CrossRef]
  11. C. Erven, B. Heim, E. Meyer-Scott, J. P. Bourgoin, R. Laflamme, G. Weihs, and T. Jennewein, “Studying free-space transmission statistics and improving free-space quantum key distribution in the turbulent atmosphere,” New J. Phys. 14, 123018 (2012). [CrossRef]
  12. A. Tunick, T. Moore, K. Deacon, and R. Meyers, “Review of representative free-space quantum communications experiments,” Proc. SPIE 7815, 781512 (2010). [CrossRef]
  13. H. Weier, T. Schmitt-Manderbach, N. Regner, C. Kurtsiefer, and H. Weinfurter, “Free space quantum key distribution: towards a real life application,” Prog. Phys. 54, 840–845 (2006). [CrossRef]
  14. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008). [CrossRef]
  15. P. J. Clarke, R. J. Collins, P. A. Hiskett, M. J. García-Martínez, N. J. Krichel, A. McCarthy, M. G. Tanner, J. A. O’Connor, C. M. Natarajan, S. Miki, M. Sasaki, Z. Wang, M. Fujiwara, I. Rech, M. Ghioni, A. Gulinatti, R. H. Hadfield, P. D. Townsend, and G. S. Buller, “Analysis of detector performance in a gigahertz clock rate quantum key distribution system,” New J. Phys. 13, 075008 (2011). [CrossRef]
  16. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004). [CrossRef]
  17. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992). [CrossRef]
  18. M. Lucamarini, G. Di Giuseppe, and K. Tamaki, “Robust unconditionally secure quantum key distribution with two nonorthogonal and uninformative states,” Phys. Rev. A 80, 032327 (2009). [CrossRef]
  19. J. Bienfang, A. Gross, A. Mink, B. Hershman, A. Nakassis, X. Tang, R. Lu, D. Su, C. Clark, C. Williams, E. Hagley, and J. Wen, “Quantum key distribution with 1.25 Gbps clock synchronization,” Opt. Express 12, 2011–2016 (2004). [CrossRef]
  20. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express 19, 23590–23600 (2011). [CrossRef]
  21. L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography’ [Appl. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett. 99, 196101(2011). [CrossRef]
  22. M. Dusek, N. Lütkenhaus, and M. Hendrych, “Quantum cryptography,” Prog. Opt. 49, 381–454 (2006). [CrossRef]
  23. B. Huttner, N. Imoto, N. Gisin, and T. Mor, “Quantum cryptography with coherent states,” Phys. Rev. A 51, 1863–1869 (1995). [CrossRef]
  24. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000). [CrossRef]
  25. K. Tamaki, M. Koashi, and N. Imoto, “Security of the Bennett 1992 quantum-key distribution protocol against an individual attack over a realistic channel,” Phys. Rev. A 67, 032310 (2003). [CrossRef]
  26. R. B. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis, “Experimental demonstration of optimal unambiguous state discrimination,” Phys. Rev. A 63, 040305 (2001). [CrossRef]
  27. D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
  28. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited