OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3345–3350

Approach to frequency estimation in self-mixing interferometry: multiple signal classification

Milan Nikolić, Dejan P. Jovanović, Yah Leng Lim, Karl Bertling, Thomas Taimre, and Aleksandar D. Rakić  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3345-3350 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the nature of self-mixing signals, we propose the use of the multiple signal classification (MUSIC) algorithm in place of the fast Fourier transform (FFT) for processing signals obtained from self-mixing interferometry (SMI). We apply this algorithm to two representative SMI measurement techniques: range finding and velocimetry. Applying MUSIC to SMI range finding, we find its signal-to-noise ratio performance to be significantly better than that of the FFT, allowing for more robust, longer-range measurement systems. We further demonstrate that MUSIC enables a fundamental change in how SMI Doppler velocity measurement is approached, letting one discard the complex fitting procedure and allowing for a real-time frequency estimation process.

© 2013 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: November 21, 2012
Manuscript Accepted: March 29, 2013
Published: May 7, 2013

Milan Nikolić, Dejan P. Jovanović, Yah Leng Lim, Karl Bertling, Thomas Taimre, and Aleksandar D. Rakić, "Approach to frequency estimation in self-mixing interferometry: multiple signal classification," Appl. Opt. 52, 3345-3350 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002). [CrossRef]
  2. T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001). [CrossRef]
  3. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980). [CrossRef]
  4. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982). [CrossRef]
  5. P. Protter, Stochastic Integration and Differential Equations (Springer, 2005).
  6. U. Küchler and E. Platen, “Weak discrete time approximation of stochastic differential equations with time delay,” Math. Comput. Simul. 59, 497–507 (2002). [CrossRef]
  7. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, 1999).
  8. R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag. 34, 276–280(1986). [CrossRef]
  9. M. Norgia, A. Magnani, and A. Pesatori, “High resolution self-mixing laser rangefinder,” Rev. Sci. Instrum. 83, 045113 (2012). [CrossRef]
  10. F. Gouaux, N. Servagent, and T. Bosch, “Absolute distance measurement with an optical feedback interferometer,” Appl. Opt. 37, 6684–6689 (1998). [CrossRef]
  11. J. Tucker, Y. L. Lim, and A. D. Rakic, “Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser,” in Conference on Optoelectronic and Microelectronic Materials and Devices, M. Gal, ed. (IEEE, 2002), pp. 583–586.
  12. Y. L. Lim, M. Nikolic, K. Bertling, R. Kliese, and A. D. Rakic, “Self-mixing imaging sensor using a monolithic VCSEL array with parallel readout,” Opt. Express 17, 5517–5525 (2009). [CrossRef]
  13. J. R. Tucker, A. D. Rakic, C. J. O’Brien, and A. V. Zvyagin, “Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers,” Appl. Opt. 46, 611–619 (2007). [CrossRef]
  14. M. Wang and G. Lai, “Displacement measurement based on Fourier transform method with external laser cavity modulation,” Rev. Sci. Instrum. 72, 3440–3445 (2001). [CrossRef]
  15. M. Wang, “Fourier transform method for self-mixing interference signal analysis,” Opt. Laser Technol. 33, 409–416 (2001). [CrossRef]
  16. A. Sakamoto, N. Tsuda, and J. Yamada, “Characteristic of self-coupling distance meter using VCSEL,” IEEJ Trans. EIS 126, 1454–1459 (2006). [CrossRef]
  17. R. Kliese and A. D. Rakic, “Spectral broadening caused by dynamic speckle in self-mixing velocimetry sensors,” Opt. Express 20, 18757–18771 (2012). [CrossRef]
  18. K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, “Self-mixing in a diode laser as a method for cardiovascular diagnostics,” J. Biomed. Opt. 8, 152–160 (2003). [CrossRef]
  19. L. Campagnolo, M. Nikolic, J. Perchoux, Y. L. Lim, K. Bertling, K. Loubière, L. Prat, A. D. Rakic, and T. Bosch, “Flow profile measurement in microchannel using the optical feedback interferometry sensing technique,” Microfluid. Nanofluid. 14, 113–119 (2013). [CrossRef]
  20. F. F. M. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41, 658–667 (2002). [CrossRef]
  21. S. M. Kay, Modern Spectral Estimation: Theory and Application (Prentice Hall, 1988).
  22. L. C. Godara, “Application of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations,” Proc. IEEE 85, 1195–1245 (1997). [CrossRef]
  23. M. Hamalainen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Rev. Mod. Phys. 65, 413–497 (1993). [CrossRef]
  24. P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer–Rao bound,” IEEE Trans. Acoust. Speech Signal Process. 37, 720–741 (1989). [CrossRef]
  25. S. Donati and S. Merlo, “Applications of diode laser feedback interferometry,” J. Opt. 29, 156–161 (1998). [CrossRef]
  26. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer-Verlag, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited