OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3368–3380

Analysis of the chromaticity of near-field binary beam shapers

Christophe Dorrer  »View Author Affiliations


Applied Optics, Vol. 52, Issue 14, pp. 3368-3380 (2013)
http://dx.doi.org/10.1364/AO.52.003368


View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The chromatic properties of binary beam shapers inducing a spatially dependent transmission on the near field of an optical source after far-field filtering and imaging are derived. Beam shapers using pixels with two transmission states are highly versatile and have been experimentally realized with distributions of amplitude pixels, phase pixels, or polarization pixels that can be designed using a half-toning algorithm. The amplitude of the shaped beam in an image plane has a precisely controlled continuous profile given by the local density of the two pixel types in the object plane. The wavelength dependence of the field transmission corresponding to the full range of design transmission between 0 and 1 is studied analytically to assess the general performance of the corresponding beam shapers for broadband sources, with an example of a specific 2D transmission profile relevant to laser engineering. Amplitude beam shapers have no significant chromaticity, but have low damage threshold. The high-damage-threshold twisted nematic liquid crystal and phase shapers induce a wavelength-dependent transmission and phase on the shaped beam.

© 2013 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(160.3710) Materials : Liquid crystals
(230.6120) Optical devices : Spatial light modulators
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Optical Devices

History
Original Manuscript: January 8, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 8, 2013
Published: May 8, 2013

Citation
Christophe Dorrer, "Analysis of the chromaticity of near-field binary beam shapers," Appl. Opt. 52, 3368-3380 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-14-3368


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. M. Dickey and S. C. Holswade, eds., Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
  2. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commerical Applications, 1st ed. (Wiley-VCH, 1998).
  3. M. A. Golub and I. Grossinger, “Diffractive optical elements for biomedical applications,” Proc. SPIE 3199, 220–231(1998). [CrossRef]
  4. B. M. Van Wonterghem, J. R. Murray, J. H. Campbell, D. R. Speck, C. E. Barker, I. C. Smith, D. F. Browning, and W. C. Behrendt, “Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion,” Appl. Opt. 36, 4932–4953 (1997). [CrossRef]
  5. C. Dorrer and J. D. Zuegel, “Design and analysis of binary beam shapers using error diffusion,” J. Opt. Soc. Am. B 24, 1268–1275 (2007). [CrossRef]
  6. A. B. Kostinski and W. Yang, “Pupil phase apodization for imaging of faint companions in prescribed regions,” J. Mod. Opt. 52, 2467–2474 (2005). [CrossRef]
  7. S. J. Thomas, R. Soummer, D. Dillon, B. Macintosh, D. Gavel, and A. Sivaramakrishnan, “Testing the apodized pupil Lyot coronagraph on the laboratory for adaptive optics extreme adaptive optics testbed,” Astron. J. 142, 119 (2011). [CrossRef]
  8. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011). [CrossRef]
  9. M. G. Tarallo, J. Miller, J. Agresti, E. D’Ambrosio, R. DeSalvo, D. Forest, B. Lagrange, J. M. Mackowsky, C. Michel, J. L. Montorio, N. Morgado, L. Pinard, A. Remilleux, B. Simoni, and P. Willems, “Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator,” Appl. Opt. 46, 6648–6654 (2007). [CrossRef]
  10. J.-C. Liang, N. Kohn, M. F. Becker, and D. J. Heinzen, “1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator,” Appl. Opt. 48, 1955–1962 (2009). [CrossRef]
  11. F. M. Dickey, L. S. Weichman, and R. N. Shagam, “Laser beam shaping techniques,” Proc. SPIE 4065, 338–348 (2000). [CrossRef]
  12. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007). [CrossRef]
  13. M. J. Guardalben and L. J. Waxer, “Improvements to long-pulse system performance and operational efficiency on OMEGA EP,” Proc. SPIE 7916, 79160G (2011). [CrossRef]
  14. D. N. Maywar, J. H. Kelly, L. J. Waxer, S. F. B. Morse, I. A. Begishev, J. Bromage, C. Dorrer, J. L. Edwards, L. Folnsbee, M. J. Guardalben, S. D. Jacobs, R. Jungquist, T. J. Kessler, R. W. Kidder, B. E. Kruschwitz, S. J. Loucks, J. R. Marciante, R. L. McCrory, D. D. Meyerhofer, A. V. Okishev, J. B. Oliver, G. Pien, J. Qiao, J. Puth, A. L. Rigatti, A. W. Schmid, M. J. Shoup, C. Stoeckl, K. A. Thorp, and J. D. Zuegel, “OMEGA EP high-energy petawatt laser: progress and prospects,” J. Phys. 112, 032007 (2008). [CrossRef]
  15. D. L. Lau, R. Ulichney, and G. R. Arce, “Blue- and green-noise halftoning models,” IEEE Signal Process. Mag. 20(4), 28–38 (2003). [CrossRef]
  16. R. Ulichney, Digital Halftoning (MIT, 1987).
  17. R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial greyscale,” J. Soc. Inf. Disp. 17, 75–77 (1976).
  18. U. Efron, Spatial Light Modulator Technology: Materials, Devices, and Applications, Vol. 47 of Optical Engineering (Marcel Dekker, 1995).
  19. S.-W. Bahk, E. Fess, B. E. Kruschwitz, and J. D. Zuegel, “A high-resolution, adaptive beam-shaping system for high-power lasers,” Opt. Express 18, 9151–9163 (2010). [CrossRef]
  20. C. Dorrer, “High-damage-threshold beam shaping using binary phase plates,” Opt. Lett. 34, 2330–2332 (2009). [CrossRef]
  21. S. Tauro, A. Bañas, D. Palima, and J. Glückstad, “Experimental demonstration of generalized phase contrast based Gaussian beam-shaper,” Opt. Express 19, 7106–7111(2011). [CrossRef]
  22. J. Glückstad and D. Palima, Generalized Phase Contrast: Applications in Optics and Photonics, Springer Series in Optical Sciences (Springer, 2009), Vol. 146, p. 310.
  23. C. Dorrer, S. K. H. Wei, P. Leung, M. Vargas, K. Wegman, J. Boulé, Z. Zhao, K. L. Marshall, and S. H. Chen, “High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices,” Opt. Lett. 36, 4035–4037 (2011). [CrossRef]
  24. A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Phys.-Usp. 54, 9–28 (2011). [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., Mcgraw-Hill Series in Electrical and Computing Engineering (McGraw-Hill, 1996).
  26. A. Forbes, F. Dickey, M. DeGama, and A. du Plessis, “Wavelength tunable laser beam shaping,” Opt. Lett. 37, 49–51 (2012). [CrossRef]
  27. A. Laskin, “Achromatic refractive beam shaping optics for broad spectrum laser applications,” Proc. SPIE 7430, 743003 (2009). [CrossRef]
  28. Z. Bor, “Distortion of femtosecond laser pulses in lenses and lens systems,” J. Mod. Opt. 35, 1907–1918 (1988). [CrossRef]
  29. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009). [CrossRef]
  30. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (Wiley, 2006).
  31. P. McIntyre, “Transmission of light through a twisted nematic liquid-crystal layer,” J. Opt. Soc. Am. 68, 869–872 (1978). [CrossRef]
  32. C. H. Gooch, and H. A. Tarry, “The optical properties of twisted nematic liquid crystal structures with twist angles ≤90°,” J. Phys. D 8, 1575–1584 (1975). [CrossRef]
  33. T. Shimomura, K. Kawaguchi, and S. Kobayashi, “Cell-thickness dependence of color properties for a twisted nematic liquid crystal display,” Appl. Opt. 24, 3390–3394 (1985). [CrossRef]
  34. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Wiley Series in Pure and Applied Optics (Wiley, 1999).
  35. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited