OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3420–3427

Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber

M. Sadegh Cheri, Hamid Latifi, F. Beygi Azar Aghbolagh, O. R. Ranjbar Naeini, Majid Taghavi, and Mohammadamir Ghaderi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3420-3427 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present the fabrication and packaging of a cantilever-based airflow sensor integrated with optical fiber. The sensor consists of a micro Fabry–Perot (FP) cavity including a fiber and a micro cantilever that is fabricated using the photolithography method. Airflow causes a small deflection of the micro cantilever and changes the cavity length of the FP, which makes the fringe shift. The pressure distribution and velocity streamlines across the cantilever resulted from the airflow in the channel have been simulated by the finite element method. The experimental results demonstrate that the sensor has a linear sensitivity of 190 [fringe shift (pm)] per (l/min) and a minimum detectable airflow change of 0.05(l/min).

© 2013 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 23, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 13, 2013
Published: May 10, 2013

M. Sadegh Cheri, Hamid Latifi, F. Beygi Azar Aghbolagh, O. R. Ranjbar Naeini, Majid Taghavi, and Mohammadamir Ghaderi, "Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber," Appl. Opt. 52, 3420-3427 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Xu, C. W. Chiu, F. Jiang, Q. Lin, and Y. C. Tai, “A MEMS multi-sensor chip for gas flow sensing,” Sens. Actuators A 121, 253–261 (2005). [CrossRef]
  2. S. Kim, T. Nam, and S. Park, “Measurement of flow direction and velocity using a micromachined flow sensor,” Sens. Actuators A 114, 312–318 (2004). [CrossRef]
  3. M. Piotto, G. Pennelli, and P. Bruschi, “Fabrication and characterization of a directional anemometer based on a single chip MEMS flow sensor,” Microelectron. Eng. 88, 2214–2217 (2011). [CrossRef]
  4. M. Shikida, T. Yokota, S. Uki, and K. Sato, “Fabrication of monolithically integrated flow sensor on tube,” Sens. Actuators A 163, 61–67 (2010). [CrossRef]
  5. Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing microcantilever structure,” Sensors 7, 2389–2401 (2007). [CrossRef]
  6. R. H. Ma, P. C. Chou, Y. H. Wang, T. H. Hsueh, L. M. Fu, and C. Y. Lee, “A microcantilever-based gas flow sensor for flow rate and direction detection,” Microsys. Technol. 15, 1201–1205 (2009). [CrossRef]
  7. N. J. Allen, D. Wood, M. C. Rosamond, and D. B. Sims-Williams, “Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows,” Procedia Chem. 1, 923–926 (2009). [CrossRef]
  8. Y. Matsuoka, Y. Yamamoto, M. Tanabe, S. Shimada, K. Yamada, A. Yasukawa, and H. Matsuzaka, “Low pressure measurement limits for silicon piezoresistive circular diaphragm sensors,” J. Micromech. Microeng. 5, 32–35 (1995). [CrossRef]
  9. R. Raiteri, M. Grattarola, H. J. Butt, and P. Skládal, “Micromechanical cantilever-based biosensors,” Sens. Actuators B 79, 115–126 (2001). [CrossRef]
  10. C. Acar and A. M. Shkel, “Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers,” J. Micromech. Microeng. 13, 634–645 (2003). [CrossRef]
  11. G. Soundararajan, M. Rouhanizadeh, H. Yu, L. DeMaio, E. S. Kim, and T. K. Hsiai, “MEMS shear stress sensors for microcirculation,” Sens. Actuators A 118, 25–32 (2005).
  12. H. Ernst, A. Jachimowicz, and G. A. Urban, “High resolution flow characterization in bio-MEMS,” Sens. Actuators A 100, 54–62 (2002). [CrossRef]
  13. S. C. Roh, Y. M. Choi, and S. Y. Kim, “Sensitivity enhancement of a silicon micro-machined thermal flow sensor,” Sens. Actuators A 128, 1–6 (2006). [CrossRef]
  14. N. T. Nguyen, “Micromachined flow sensors—a review,” Flow Meas. Instrum. 8, 7–16 (1997). [CrossRef]
  15. N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity,” J. Microelectromech. Syst. 16, 999–1014 (2007). [CrossRef]
  16. P. Caldas, P. A. S. Jorge, G. Rego, O. Frazao, J. L. Santos, L. A. Ferreira, and F. Araujo, “Fiber optic hot-wire flowmeter based on a metallic coated hybrid long period grating/fiber Bragg grating structure,” Appl. Opt. 50, 2738–2743 (2011). [CrossRef]
  17. S. Park, S. Kim, S. Kim, and Y. Kim, “A flow direction sensor fabricated using MEMS technology and it’s simple interface circuit,” Sens. Actuators B 91, 347–352 (2003). [CrossRef]
  18. I. Padron, A. T. Fiory, and N. M. Ravindra, “Novel MEMS Fabry–Perot interferometric pressure sensors,” Mater. Sci. Forum 638–642, 1009–1014 (2010). [CrossRef]
  19. A. Cipullo, G. Gruca, K. Heeck, F. De Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. Actuators A 178, 17–25 (2012). [CrossRef]
  20. J. X. Fang, H. F. Taylor, and H. S. Choi, “Fiber-optic Fabry–Perot flow sensor,” Microw. Opt. Technol. Lett. 18, 209–211 (1998). [CrossRef]
  21. M. Durán-Sánchez, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Muñoz-Aguirre, and M. Méndez-Otero, “Experimental study of the fiber laser output intensity behavior and its application to a water flow,” Sens. Actuators B 123, 816–821(2007). [CrossRef]
  22. X. Wang, B. Li, O. L. Russo, H. T. Roman, K. K. Chin, and K. R. Farmer, “Diaphragm design guidelines and an optical pressure sensor based on MEMS technique,” Microelectron. J. 37, 50–56 (2006). [CrossRef]
  23. G. C. Hill, R. Melamud, F. E. Declercq, A. A. Davenport, I. H. Chan, P. G. Hartwell, and B. L. Pruitt, “SU-8 MEMS Fabry–Perot pressure sensor,” Sens. Actuators A 138, 52–62 (2007). [CrossRef]
  24. C. Song, A. R. Aiyar, S. H. Kim, and M. G. Allen, “Exploitation of aeroelastic effects for drift reduction, in an all-polymer air flow sensor,” Sens. Actuators A 165, 66–72 (2011). [CrossRef]
  25. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature and composition,” Appl. Opt. 6, 51–59 (1967). [CrossRef]
  26. J. A. Stone and J. H. Zimmerman, “Index of Refraction of Air,” http://emtoolbox.nist.gov/Wavelength/Ciddor.asp .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited