OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 14 — May. 10, 2013
  • pp: 3433–3443

Schlieren measurements in the round cylinder of an optically accessible internal combustion engine

Sebastian Arnold Kaiser, Victor Manuel Salazar, and Alexandra A. Hoops  »View Author Affiliations

Applied Optics, Vol. 52, Issue 14, pp. 3433-3443 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes the design and experimental application of an optical system to perform schlieren measurements in the curved geometry of the cylinder of an optically accessible internal combustion engine. Key features of the system are a pair of cylindrical positive meniscus lenses, which keep the beam collimated while passing through the unmodified, thick-walled optical cylinder, and a pulsed, high-power light-emitting diode with narrow spectral width. In combination with a high-speed CMOS camera, the system is used to visualize the fuel jet after injection of hydrogen fuel directly into the cylinder from a high-pressure injector. Residual aberrations, which limit the system’s sensitivity, are characterized experimentally and are compared to the predictions of ray-tracing software.

© 2013 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(110.0110) Imaging systems : Imaging systems
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(220.3620) Optical design and fabrication : Lens system design
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Remote Sensing and Sensors

Original Manuscript: January 30, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 15, 2013
Published: May 10, 2013

Sebastian Arnold Kaiser, Victor Manuel Salazar, and Alexandra A. Hoops, "Schlieren measurements in the round cylinder of an optically accessible internal combustion engine," Appl. Opt. 52, 3433-3443 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).
  2. E. Gutmark, T. P. Parr, D. M. Hansonparr, and K. C. Schadow, “Simultaneous OH and schlieren visualization of premixed flames at the lean blow-out limit,” Exp. Fluids 12, 10–16 (1991). [CrossRef]
  3. G. Dixon-Lewis and G. L. Isles, “Sharp-focusing schlieren systems for studies of flat flames,” J. Sci. Instrum. 39, 148–151 (1962). [CrossRef]
  4. F. J. Weinberg, “Location of the schlieren image in a flame,” Fuel 34, S84–S88 (1955).
  5. D. K. Srivastava, M. Weinrotter, K. Iskrac, A. K. Agarwal, and E. Wintner, “Characterisation of laser ignition in hydrogen–air mixtures in a combustion bomb,” Int. J. Hydrogen Energy 34, 2475–2482 (2009). [CrossRef]
  6. W. Meier, I. Boxx, C. Arndt, M. Gamba, and N. Clemens, “Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques,” J. Eng. Gas Turbines Power 133, 021504 (2011). [CrossRef]
  7. A. De Risi, B. Gajdeczko, and F. Bracco, “A study of H2, CH4, C2H6 mixing and combustion in a direct-injection stratified-charge engine,” SAE technical paper 971710 (1997).
  8. Q. Q. Li, J. Fu, X. S. Wu, C. L. Tan, and Z. H. Huang, “Laminar flame speeds of DMF/iso-octane-air-N-2/CO2 mixtures,” Energy Fuels 26, 917–925 (2012). [CrossRef]
  9. V. M. Salazar and S. A. Kaiser, “Influence of the flow field on flame propagation in a hydrogen-fueled internal combustion engine,” SAE Int. J. Engines 4, 2376–2394 (2011).
  10. J. V. Pastor, J. M. García, J. M. Pastor, and L. D. Zapata, “Evaporating diesel spray visualization using a double-pass shadowgraphy/schlieren imaging,” SAE technical paper 2007-24-0026 (2007).
  11. M. Cárdenas, P. Hottenbach, R. Kneer, and G. Grünefeld, “Investigations of clustered diesel jets under quiescent high-pressure and high-temperature conditions using Mie, Schlieren and Chemiluminescence imaging,” SAE Int. J. Engines 2, 272–286 (2010). [CrossRef]
  12. L. M. Pickett, S. Kook, and T. C. Williams, “Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging,” SAE technical paper 2009-01-0658 (2009).
  13. M. Konno, S. Kajitani, Z. Chen, K. Yoneda, H. Matsui, and S. Goto, “Investigation of the combustion process of a DI CI engine fueled with dimethyl ether,” SAE technical paper 2001-01-3504 (2001).
  14. B. R. Petersen and J. Ghandhi, “Transient high-pressure hydrogen jet measurements,” SAE technical paper 2006-01-0652 (2006).
  15. B. R. Petersen, “Transient high-pressure hydrogen jet measurements,” Ph.D. thesis (University of Wisconsin-Madison, 2006).
  16. M. Namazian, S. Hansen, E. Lyford-Pike, J. Sanchez-Barsse, J. Heywood, and J. Rife, “Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine,” SAE Technical Paper 800044 (1980).
  17. F. Meier, J. Köhler, W. Stolz, W. H. Bloss, and M. Al-Garni, “Cycle-resolved hydrogen flame speed measurements with high speed schlieren technique in a hydrogen direct injection SI engine,” SAE technical paper 942036 (1994).
  18. T. Baritaud, “High speed schlieren visualization of flame initiation in a lean operating S.I. engine,” SAE technical paper 872152 (1987).
  19. M. Weinrotter, E. Wintner, K. Iskrac, T. Neger, H. Olofsson, H. Seyfried, M. Alden, M. Lackner, F. Winter, A. Vresser, A. Hultqvist, and B. Johansson, “Optical diagnostics of laser-induced and spark plug-assisted HCCI combustion,” SAE technical paper 2005-01-0129 (2005).
  20. T. Fujikawa, T. Ozasa, and K. Kozuka, “Development of transparent cylinder engines for schlieren observation,” SAE technical paper 881632 (1988).
  21. T. Ozasa, K. Kozuka, and T. Fujikawa, “Schlieren observations of in-cylinder phenomena concerning a direct-injection gasoline engine,” SAE technical paper 982696 (1998).
  22. K. Kozuka, T. Ozasa, T. Fujikawa, and A. Saito, “Schlieren observation of spark-ignited premixed charge combustion phenomena using a transparent collimating cylinder engine,” J. Eng. Gas Turbines Power 125, 336–343 (2003). [CrossRef]
  23. C. Willert, D. Mitchell, and J. Soria, “An assessment of high-power light-emitting diodes for high frame rate schlieren imaging,” Exp. Fluids 53, 413–421 (2012). [CrossRef]
  24. C. Willert, B. Stasicki, J. Klinner, and S. Moessner, “Pulsed operation of high-power light emitting diodes for imaging flow velocimetry,” Meas. Sci. Technol. 21, 075402 (2010). [CrossRef]
  25. V. M. Salazar and S. A. Kaiser, “Influence of the in-cylinder flow field (tumble) on the fuel distribution in a DI hydrogen engine using a single-hole injector,” SAE Int. J. Engines 3, 309–325 (2010).
  26. R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Numerical and optical evolution of gaseous jets in direct injection hydrogen engines,” SAE technical paper 2011-01-0675 (2011).
  27. R. Scarcelli, T. Wallner, N. Matthias, V. M. Salazar, and S. A. Kaiser, “Mixture formation in direct injection hydrogen engines: CFD and optical analysis of single- and multi-hole nozzles,” SAE Int. J. Engines 4, 2361–2375 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited