OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 15 — May. 20, 2013
  • pp: 3451–3460

Two important mechanisms damaging KH2PO4 crystal processed by ultraprecision fly cutting and their relationships with cutting parameters

Mingquan Li, Mingjun Chen, Jian Cheng, Yong Xiao, and Wei Jiang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 15, pp. 3451-3460 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1737 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mid-frequency waviness and subsurface crack are two fundamental factors that damage KH 2 PO 4 (KDP) crystal processed by ultraprecise fly cutting. In this paper, the motif theory and the Fourier model method are used to analyze the influence of the two factors on the laser-induced damage threshold (LIDT) of KDP. Research results indicate that the modulation degrees increase nearly linearly when the waviness amplitude and subsurface crack depth increase, and, meanwhile, the LIDT tends to decrease. The two factors have different effects during different stages of KDP failure. The mean amplitudes of waviness and subsurface damage depth have similar changing regulations with different feeds. From the machining perspective, we need not necessarily know which is more dangerous, because when one factor is controlled, the other one will also be restrained at the same time. In general, smaller feed and cutting depth are benefits for improving the LIDT of KDP.

© 2013 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.4330) Materials : Nonlinear optical materials
(220.1920) Optical design and fabrication : Diamond machining

ToC Category:
Optical Design and Fabrication

Original Manuscript: February 22, 2013
Manuscript Accepted: April 14, 2013
Published: May 13, 2013

Mingquan Li, Mingjun Chen, Jian Cheng, Yong Xiao, and Wei Jiang, "Two important mechanisms damaging KH2PO4 crystal processed by ultraprecision fly cutting and their relationships with cutting parameters," Appl. Opt. 52, 3451-3460 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility: enabling fusion ignition for the 21st century,” Nucl. Fusion 44, S228–S238 (2004). [CrossRef]
  2. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004). [CrossRef]
  3. C. W. Carr, M. D. Feit, M. A. Johnson, and A. M. Rubenchik, “Complex morphology of laser-induced bulk damage in K2H2-xDxPO4 crystals,” Appl. Phys. Lett 89, 131901 (2006). [CrossRef]
  4. P. DeMange, R. A. Negres, H. B. Radousky, and S. G. Demos, “Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals,” Opt. Eng. 45, 104–205 (2006).
  5. X. Sun, Y. Z. Zhang, S. Q. Gao, Q. T. Gu, Y. N. Li, S. L. Wang, X. G. Xu, Y. P. Li, Z. S. Gao, and C. S. Fang, “Effect of inclusions on laser damage of KDP crystals,” Piezoelectr. Acoustoopt. 26, 485–487 (2004) (in Chinese). [CrossRef]
  6. K. P. Wang, C. S. Fang, J. X. Zhang, S. L. Wang, X. Sun, Q. T. Gu, and Y. P. Li, “Research on laser induced damage mechanisms of KDP crystals,” J. Synth. Cryst. 33, 48–51 (2004).
  7. A. V. Hamza, W. J. Sickhaus, A. M. Rubenchik, M. D. Feit, L. L. Chase, M. Savina, M. J. Pellin, I. D. Hutcheon, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and M. J. Fluss, “Engineered defects for investigation of laser-induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002). [CrossRef]
  8. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011). [CrossRef]
  9. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973). [CrossRef]
  10. P. E. Miller, T. L. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009). [CrossRef]
  11. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47, 113–152 (2002). [CrossRef]
  12. P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1999). [CrossRef]
  13. C. H. An, J. Wang, F. H. Zhang, Q. Xu, and D. J. Chen, “Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting,” Nanotechnol. Precis. Eng. 8, 439–446 (2011) (in Chinese).
  14. M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010). [CrossRef]
  15. M. Q. Li, M. J. Chen, C. H. An, L. Zhou, J. Cheng, Y. Xiao, and W. Jiang, “Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source,” Chin. Phys. B 21, 050301 (2012). [CrossRef]
  16. L. F. Li, “Reformulation of Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998). [CrossRef]
  17. K. X. Fu, Z. H. Wang, D. Y. Zhang, J. Zhang, and Q. Z. Zhang, “A model theory and recursion RTCM algorithm for gratings of deep grooves and arbitrary profile,” Sci. China A 42, 636–645 (1999). [CrossRef]
  18. X. G. Tang, K. X. Fu, Z. H. Wang, and X. C. Liu, “Analysis of rigorous modal theory for arbitrary dielectric gratings made with anisotropic materials,” Acta Opt. Sin. 22, 774–779 (2002). [CrossRef]
  19. H. J. Zhao, N. S. Qiao, and D. R. Yuan, “Analysis the diffractions characteristics of any shape profile gratings,” Laser J. 28, 26–27 (2007). [CrossRef]
  20. M. J. Chen, M. Q. Li, W. Jiang, and Q. Xu, “Influence of period and amplitude of micro-waviness on KH2PO4 crystal’s laser damage threshold,” J. Appl. Phys. 108, 043109 (2010). [CrossRef]
  21. ISO 12805:1996 Geometrical product specification (GPS)—surface texture: profile method-motif parameters [S].
  22. C. G. Li, “Calculating methods of MOTIF parameters,” Aviation Precision Manufacturing Technol. 37, 42–46 (2001) (in Chinese). [CrossRef]
  23. L. G. Yang, X. J. Liu, X. Z. Wang, and S. H. Wang, “Assessing method of 2D-motif for surface topography and its realization algorithm,” J. China Three Gorges Univ. (Natural Sciences) 28, 241–243 (2006) (in Chinese). [CrossRef]
  24. S. H. Wang, F. H. Xu, Y. R. Chen, and T. B. Xie, “The MOTIF evaluation method and its region combination algorithm for surface texture,” in 2011 International Conference on Electric Information and Control Engineering (ICEICE) (IEEE, 2011), pp. 1811–1818.
  25. S. H. Wang and T. B. Xie, “The application of watershed segment method in the characterization of 3D-motif,” Proc. SPIE 6280, 62801 (2006). [CrossRef]
  26. M. Dietzsch, K. Papenfub, and T. Hartmann, “The motif-method (ISO 12085)—a suitable description for functional, manufactural and metrological requirements,” Int. J. Mach. Tools Manuf. 38, 625–632 (1998). [CrossRef]
  27. F. Y. Ge’nin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001). [CrossRef]
  28. J. H. Wang, M. J. Chen, S. Dong, and L. J. Zhang, “Study on the mechanism of brittle-ductile transition for turning KDP crystal with single point diamond turning,” Opto-Electron. Eng. 23, 67–88 (2005).
  29. W. B. Lee and B. F. Cheung, “A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining,” Int. J. Mech. Sci. 43, 961–991(2001). [CrossRef]
  30. W. Zhang and J. Q. Zhu, “Subsurface damage of Nd-doped phosphate glasses in optical fabrication,” Optik 119, 738–741 (2008). [CrossRef]
  31. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599110 (2005). [CrossRef]
  32. J. Shen, S. H. Liu, K. Yi, H. B. He, J. D. Shao, and Z. X. Fan, “Subsurface damage in optical substrates,” Optik 116, 288–294 (2005). [CrossRef]
  33. C. F. Kranenberg and K. C. Jungling, “Subsurface damage identification in optically transparent materials using a nondestructive method,” Appl. Opt. 33, 4248–4253 (1994). [CrossRef]
  34. K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, “Non-destructive, real time direct measurements of subsurface damage,” Proc. SPIE 5799, 105–110 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited