OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 15 — May. 20, 2013
  • pp: 3526–3537

Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems

Jaka Katrašnik, Franjo Pernuš, and Boštjan Likar  »View Author Affiliations

Applied Optics, Vol. 52, Issue 15, pp. 3526-3537 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The accuracy of the radiometric response of acousto-optic tunable filter (AOTF) hyperspectral imaging systems is crucial for obtaining reliable measurements. It is therefore important to know the radiometric response and noise characteristics of the hyperspectral imaging system used. A radiometric model of an AOTF hyperspectral imaging system composed of an imaging sensor radiometric model (CCD, CMOS, and sCMOS) and an AOTF light transmission model is proposed. Using the radiometric model, a method for obtaining the fixed pattern noise (FPN) of the imaging system by displacing and imaging an illuminated reference target is developed. Methods for estimating the temporal noise of the imaging system, using the photon transfer method, and for correcting FPN are also presented. Noise estimation and image restoration methods were tested on an AOTF hyperspectral imaging system. The results indicate that the developed methods can accurately calculate temporal and FPN, and can effectively correct the acquired images. After correction, the signal-to-noise ratio of the acquired images was shown to increase by 26%.

© 2013 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(110.4280) Imaging systems : Noise in imaging systems
(150.1488) Machine vision : Calibration
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Machine Vision

Original Manuscript: March 6, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 17, 2013
Published: May 15, 2013

Jaka Katrašnik, Franjo Pernuš, and Boštjan Likar, "Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems," Appl. Opt. 52, 3526-3537 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bannon, “Hyperspectral imaging: cubes and slices,” Nat. Photonics 3, 627–629 (2009). [CrossRef]
  2. C. Gendrin, Y. Roggo, and C. Collet, “Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review,” J. Pharm. Biomed. Anal. 48, 533–553 (2008). [CrossRef]
  3. J. Amigo, “Practical issues of hyperspectral imaging analysis of solid dosage forms,” Anal. Bioanal. Chem. 398, 93–109 (2010). [CrossRef]
  4. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228, 1147–1153 (1985). [CrossRef]
  5. A. Gowen, C. Odonnell, P. Cullen, G. Downey, and J. Frias, “Hyperspectral imaging an emerging process analytical tool for food quality and safety control,” Trends Food Sci. Technol. 18, 590–598 (2007). [CrossRef]
  6. D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. García-Navarrete, and J. Blasco, “Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment,” Food Bioprocess Technol. 5, 1121–1142 (2012). [CrossRef]
  7. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A 106, 309–323 (2012). [CrossRef]
  8. J. A. Chin, E. C. Wang, and M. R. Kibbe, “Evaluation of hyperspectral technology for assessing the presence and severity of peripheral artery disease,” J. Vasc. Surg. 54, 1679–1688 (2011). [CrossRef]
  9. H. Akbari, K. Uto, Y. Kosugi, K. Kojima, and N. Tanaka, “Cancer detection using infrared hyperspectral imaging,” Cancer Sci. 102, 852–857 (2011). [CrossRef]
  10. J. Prats-Montalbán, A. de Juan, and A. Ferrer, “Multivariate image analysis: a review with applications,” Chemom. Intell. Lab. Syst. 107, 1–23 (2011). [CrossRef]
  11. A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Trianni, “Recent advances in techniques for hyperspectral image processing,” Remote Sens. Environ. 113, S110–S122 (2009). [CrossRef]
  12. B. Penna, T. Tillo, and E. Magli, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Remote Sens. 45, 1408–1421 (2007). [CrossRef]
  13. T. Skauli, “Sensor noise informed representation of hyperspectral data, with benefits for image storage and processing,” Opt. Express 19, 13031–13046 (2011). [CrossRef]
  14. H. Othman and S. Qian, “Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage,” IEEE Trans. Geosci. Remote Sens. 44, 397–408 (2006). [CrossRef]
  15. F. Vagni, “Survey of hyperspectral and multispectral imaging technologies,” Technical report (NATO, 2007).
  16. J. S. Pearlman, P. S. Barry, C. C. Segal, J. Shepanski, D. Beiso, and S. L. Carman, “Hyperion, a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens. 41, 1160–1173 (2003). [CrossRef]
  17. Specim, “Hyperspectral imaging products,” http://specim.fi/ . Accessed 5 March 2013.
  18. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000). [CrossRef]
  19. G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 267–276 (1994). [CrossRef]
  20. H. Tian, B. Fowler, and A. E. Gamal, “Analysis of temporal noise in CMOS photodiode active pixel sensor,” IEEE J. Solid-State Circuits 36, 92–101 (2001). [CrossRef]
  21. A. E. Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag. 21(3), 6–20 (2005). [CrossRef]
  22. J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging systems,” Chemom. Intell. Lab. Syst. 101, 23–29 (2010). [CrossRef]
  23. M. Bürmen, F. Pernuš, and B. Likar, “Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials,” Appl. Spectrosc. 65, 393–401 (2011). [CrossRef]
  24. Ž. Špiclin, J. Katrašnik, M. Bürmen, F. Pernuš, and B. Likar, “Geometric calibration of a hyperspectral imaging system,” Appl. Opt. 49, 2813–2818 (2010). [CrossRef]
  25. J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Improving the performance of acousto-optic tunable filters in imaging applications,” J. Electron. Imaging 19, 043022 (2010). [CrossRef]
  26. N. Gorretta, G. Rabatel, J.-M. Roger, C. Fiorio, C. Lelong, and V. Bellon-Maurel, “Hyperspectral imaging system calibration using image translations and Fourier transform,” J. Near Infrared Spectrosc. 16, 371–380 (2008). [CrossRef]
  27. D. Kohler, W. Bissett, R. Steward, and C. Davis, “New approach for the radiometric calibration of spectral imaging systems,” Opt. Express 12, 2463–2477 (2004). [CrossRef]
  28. P. C. Knee, “Investigation of the uniformity and ageing of integrating spheres,” Anal. Chim. Acta 380, 391–399 (1999). [CrossRef]
  29. H. Tian, “Noise analysis in CMOS image sensors,” Ph.D. thesis (Stanford University, 2000).
  30. J. L. Hodges and E. L. Lehmann, Basic Concepts of Probability and Statistics, Classics in Applied Mathematics (Society for Industrial and Applied Mathematics, 1970), Vol 48.
  31. I. Chang, “Acousto-optic devices and applications,” in Handbook of Optics: Devices, Measurements, and Properties, M. Bass, ed. 2nd ed. (McGraw-Hill, 1994), p. 1568.
  32. J. R. Janesick, Photon Transfer (SPIE, 2007).
  33. C. Davis, J. Bowles, R. Leathers, D. Korwan, T. V. Downes, W. Snyder, W. Rhea, W. Chen, J. Fisher, P. Bissett, and R. A. Reisse, “Ocean PHILLS hyperspectral imager: design, characterization, and calibration,” Opt. Express 10, 210–221 (2002). [CrossRef]
  34. R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists (Pearson Education, 2010).
  35. B. Likar, J. Maintz, and M. Viergever, “Retrospective shading correction based on entropy minimization,” J. Microsc. 197, 285–295 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited