OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 15 — May. 20, 2013
  • pp: 3538–3556

Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas

Jeffrey A. Koch, Otto L. Landen, Laurence J. Suter, Laurent P. Masse, Daniel S. Clark, James S. Ross, Andrew J. Mackinnon, Nathan B. Meezan, Cliff A. Thomas, and Yuan Ping  »View Author Affiliations

Applied Optics, Vol. 52, Issue 15, pp. 3538-3556 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

© 2013 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(110.2990) Imaging systems : Image formation theory
(120.5710) Instrumentation, measurement, and metrology : Refraction
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: February 12, 2013
Manuscript Accepted: April 12, 2013
Published: May 16, 2013

Jeffrey A. Koch, Otto L. Landen, Laurence J. Suter, Laurent P. Masse, Daniel S. Clark, James S. Ross, Andrew J. Mackinnon, Nathan B. Meezan, Cliff A. Thomas, and Yuan Ping, "Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas," Appl. Opt. 52, 3538-3556 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Kalantar, S. W. Haan, B. A. Hammel, C. J. Keane, O. L. Landen, and D. H. Munro, “X-ray backlit imaging measurement of in-flight pusher density for an indirect drive capsule implosion,” Rev. Sci. Instrum. 68, 814–816 (1997). [CrossRef]
  2. F. J. Marshall, P. W. McKenty, J. A. Delettrez, R. Epstein, J. P. Knauer, V. A. Smalyuk, J. A. Frenje, C. K. Li, R. D. Petrasso, F. H. Sequin, and R. C. Mancini, “Plasma-density determination from x-ray radiography of laser-driven spherical implosions,” Phys. Rev. Lett. 102, 185004 (2009). [CrossRef]
  3. D. G. Hicks, B. K. Spears, D. G. Braun, R. E. Olson, C. M. Source, P. M. Celliers, G. W. Collins, and O. L. Landen, “Convergent ablator performance measurements,” Phys. Plasmas 17, 102703 (2010). [CrossRef]
  4. R. E. Olson, D. G. Hicks, N. B. Meezan, J. A. Koch, and O. L. Landen, “Comparisons of NIF convergent ablator simulations with radiograph data,” Rev. Sci. Instrum. 83, 10D310 (2012). [CrossRef]
  5. J. A. Koch, N. Izumi, L. A. Welser, R. C. Mancini, S. W. Haan, T. W. Barbee, S. Dalhed, I. E. Golovkin, L. Klein, R. W. Lee, F. J. Marshall, D. Meyerhofer, H. Nishimura, Y. Ochi, T. C. Sangster, and V. Smalyuk, “Core temperature and density profile measurements in inertial confinement fusion implosions,” High Energy Density Physics 4, 1–17 (2008). [CrossRef]
  6. B. J. Kozioziemski, J. A. Koch, A. Barty, H. E. Martz, W.-K. Lee, and K. Fezzaa, “Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging,” J. Appl. Phys. 97, 063103 (2005). [CrossRef]
  7. J. A. Koch, O. L. Landen, B. J. Kozioziemski, N. Izumi, E. L. Dewald, J. D. Salmonson, and B. A. Hammel, “Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications,” J. Appl. Phys. 105, 113112 (2009). [CrossRef]
  8. J. Workman, J. Cobble, K. Flippo, D. C. Gautier, D. S. Montgomery, and D. T. Offerman, “Phase contrast imaging using ultrafast x-rays in laser-shocked materials,” Rev. Sci. Instrum. 81, 10E520 (2010). [CrossRef]
  9. Y. Ping, O. L. Landen, D. G. Hicks, J. A. Koch, R. Wallace, C. Sorce, B. A. Hammel, and G. W. Collins, “Refraction-enhanced x-ray radiography for density profile measurements at CH/Be interface,” J. Instrum. 6, P09004 (2011). [CrossRef]
  10. D. Chapman, W. Thomlinson, R. E. Johnson, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997). [CrossRef]
  11. N. Yagi, Y. Suzuki, K. Umetani, Y. Kohmura, and K. Yamasaki, “Refraction-enhanced x-ray imaging of mouse lung using synchrotron radiation source,” Med. Phys. 26, 2190–2193 (1999). [CrossRef]
  12. J. Keyriläinen, M. Fernández, and P. Suortti, “Refraction contrast in x-ray imaging,” Nuc. Instrum. Meth. Phys. Res. A 488, 419–427 (2002). [CrossRef]
  13. M. N. Wernick, Y. Yang, I. Mondal, D. Chapman, M. Hasnah, C. Parham, E. Pisano, and Z. Zhong, “Computation of mass-density images from x-ray refraction-angle images,” Phys. Med. Biol. 51, 1769–1778 (2006). [CrossRef]
  14. A. Clegg, A. L. Fey, and T. J. W. Lazio, “The gaussian plasma lens in astrophysics: refraction,” Astrophys. J. 496, 253–266 (1998). [CrossRef]
  15. J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. Da Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, and W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998). [CrossRef]
  16. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997). [CrossRef]
  17. D. Stutman and M. Finkenthal, “Talbot-Lau x-ray interferometry for high energy density plasma diagnostic,” Rev. Sci. Instrum. 82, 113508 (2011). [CrossRef]
  18. X. Wu and H. Liu, “A general theoretical formalism for x-ray phase contrast imaging,” J. X-ray Sci. Technol. 11, 33–42 (2003).
  19. T. E. Gureyev and S. W. Wilkins, “On x-ray phase imaging with a point source,” J. Opt. Soc. Am. A 15, 579–585 (1998). [CrossRef]
  20. J. A. Koch, J. D. Sater, A. J. MacKinnon, T. P. Bernat, D. N. Bittner, G. W. Collins, B. A. Hammel, E. R. Mapoles, and C. H. Still, “Numerical raytrace verification of optical diagnostics of ice surface roughness for inertial confinement fusion experiments,” Fusion Sci. Tech. 43, 55–66 (2003).
  21. S. H. Glenzer, D. A. Callahan, A. J. MacKinnon, J. L. Kline, G. Grim, E. T. Alger, R. L. Berger, L. A. Bernstein, R. Betti, D. L. Bleuel, T. R. Boehly, D. K. Bradley, S. C. Burkhart, R. Burr, J. A. Caggiano, C. Castro, D. T. Casey, C. Choate, D. S. Clark, P. Celliers, C. J. Cerjan, G. W. Collins, E. L. Dewald, P. DiNicola, J. M. DiNicola, L. Divol, S. Dixit, T. Döppner, R. Dylla-Spears, E. Dzenitis, M. Eckart, G. Erbert, D. Farley, J. Fair, D. Fittinghoff, M. Frank, L. J. A. Frenje, S. Friedrich, D. T. Casey, M. Gatu Johnson, C. Gibson, E. Giraldez, V. Glebov, S. Glenn, N. Guler, S. W. Haan, B. J. Haid, B. A. Hammel, A. V. Hamza, C. A. Haynam, G. M. Heestand, M. Hermann, H. W. Hermann, D. G. Hicks, D. E. Hinkel, J. P. Holder, D. M. Holunda, J. B. Horner, W. W. Hsing, H. Huang, N. Izumi, M. Jackson, O. S. Jones, D. H. Kalantar, R. Kauffman, J. D. Kilkenny, R. K. Kirkwood, J. Klingmann, T. Kohut, J. P. Knauer, J. A. Koch, B. Kozioziemki, G. A. Kyrala, A. L. Kritcher, J. Kroll, K. La Fortune, L. Lagin, O. L. Landen, D. W. Larson, D. LaTray, R. J. Leeper, S. Le Pape, J. D. Lindl, R. Lowe-Webb, T. Ma, J. McNaney, A. G. MacPhee, T. N. Malsbury, E. Mapoles, C. D. Marshall, N. B. Meezan, F. Merrill, P. Michel, J. D. Moody, A. S. Moore, M. Moran, K. A. Moreno, D. H. Munro, B. R. Nathan, A. Nikroo, R. E. Olson, C. D. Orth, A. E. Pak, P. K. Patel, T. Parham, R. Petrasso, J. E. Ralph, H. Rinderknecht, S. P. Regan, H. F. Robey, J. S. Ross, M. D. Rosen, R. Sacks, J. D. Salmonson, R. Saunders, J. Sater, C. Sangster, M. B. Schneider, F. H. Séguin;, M. J. Shaw, B. K. Spears, P. T. Springer, W. Stoeffl, L. J. Suter, C. A. Thomas, R. Tommasini, R. P. J. Town, C. Walters, S. Weaver, S. V. Weber, P. J. Wegner, P. K. Whitman, K. Widmann, C. C. Widmayer, C. H. Wilde, D. C. Wilson, B. Van Wonterghem, B. J. MacGowan, L. J. Atherton, M. J. Edwards, and E. I. Moses, “Cryogenic thermonuclear fuel implosions on the National Ignition Facility,” Phys. Plasmas 19, 056318 (2012). [CrossRef]
  22. The forward and backward Abel transform integrals can be solved exactly when the transform function f(r) or dF(x)/dx is described by discrete points connected by straight lines, and assumed to be zero outside bounds [a, b]. This numerical approach is utilized throughout.
  23. J. A. Koch, O. L. Landen, L. J. Suter, and L. P. Masse, “A simple solution to the Fresnel–Kirchoff diffraction integral for application to refraction-enhanced radiography,” J. Opt. Soc. Am. A (2013) (to be published).
  24. D. S. Clark, S. W. Haan, A. W. Cook, M. J. Edwards, B. A. Hammel, J. M. Koning, and M. M. Marinak, “Short wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs,” Phys. Plasmas 18, 082701 (2011). [CrossRef]
  25. H. F. Robey, P. M. Celliers, J. L. Kline, A. J. Mackinnon, T. R. Boehly, O. L. Landen, J. H. Eggert, D. Hicks, S. Le Pape, D. R. Farley, M. W. Bowers, K. G. Krauter, D. H. Munro, O. S. Jones, J. L. Milovich, D. Clark, B. K. Spears, R. P. J. Town, S. W. Haan, S. Dixit, M. B. Schneider, E. L. Dewald, K. Widmann, J. D. Moody, T. D. Döppner, H. B. Radousky, A. Nikroo, J. J. Kroll, A. V. Hamza, J. B. Horner, S. D. Bhandarkar, E. Dzenitis, E. Alger, E. Giraldez, C. Castro, K. Moreno, C. Haynam, K. N. LaFortune, C. Widmayer, M. Shaw, K. Jancaitis, T. Parham, D. M. Holunga, C. F. Walters, B. Haid, T. Malsbury, D. Trummer, K. R. Coffee, B. Burr, L. V. Berzins, C. Choate, S. J. Brereton, S. Azevedo, H. Chandrasekaran, S. Glenzer, J. A. Caggiano, J. P. Knauer, J. A. Frenje, D. T. Casey, M. Gatu Johnson, F. H. Séguin, B. K. Young, M. J. Edwards, B. M. Van Wonterghem, J. Kilkenny, B. J. MacGowan, J. Atherton, J. D. Lindl, D. D. Meyerhofer, and E. Moses, “Precision shock tuning on the National Ignition Facility,” Phys. Rev. Lett. 108, 215004 (2012). [CrossRef]
  26. Y. Suzuki, N. Yagi, and K. Uesugi, “X-ray refraction-enhanced imaging and a method for phase retrieval for a simple object,” J. Synchrotron Rad. 9, 160–165 (2002). [CrossRef]
  27. A. B. Bullock, O. L. Landen, B. E. Blue, J. Edwards, and D. K. Bradley, “X-ray induced pinhole closure in point-projection x-ray radiography,” J. Appl. Phys. 100, 043301 (2006). [CrossRef]
  28. M. Marinak, S. W. Haan, T. R. Dittrich, R. E. Tipton, and G. B. Zimmerman, “A comparison of three-dimensional multimode hydrodynamic growth on various National Ignition Facility capsule designs with HYDRA simulations,” Phys. Plasmas 5, 1125–1132 (1998). [CrossRef]
  29. I. Golovkin, R. Mancini, S. Louis, Y. Ochi, K. Fujita, H. Nishimura, H. Shirga, N. Miyanaga, H. Azechi, R. Butzback, I. Uschmann, E. Förster, J. Delettrez, J. Koch, R. W. Lee, and L. Klein, “Spectroscopy determination of dynamic plasma gradients in implosion cores,” Phys. Rev. Lett. 88, 045002 (2002). [CrossRef]
  30. E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik 15, 937–945 (1980). [CrossRef]
  31. J. Ruiz-Camacho, F. N. Beg, and P. Lee, “Comparison of sensitivities of Moire deflectometry and interferometry to measure electron densities in z-pinch plasmas,” J. Phys. D. 40, 2026–2032 (2007). [CrossRef]
  32. K. Baker, J. Brase, M. Kartz, S. S. Olivier, B. Sawvel, and J. Tucker, “Electron density characterization by use of a broadband x-ray-compatible wave-front sensor,” Opt. Lett. 28, 149–151 (2003). [CrossRef]
  33. H. S. Park, N. Izumi, M. H. Key, J. A. King, J. A. Koch, O. L. Landen, P. K. Patel, D. F. Price, B. A. Remington, H. F. Robey, R. A. Snavely, M. Tabak, R. P. J. Town, J. E. Wickersham, C. Stoeckl, M. Storm, W. Theobald, D. M. Chambers, R. Eagleton, T. Goldsack, R. J. Clarke, R. Heathcote, E. Giraldez, A. Nikroo, D. A. Steinman, R. B. Stephens, and B. B. Zhang, “High-energy K-alpha radiography using high-intensity, short-pulse lasers,” Phys. Plasmas 13, 056309 (2006). [CrossRef]
  34. R. Tommasini, S. P. Hatchett, D. S. Hey, C. Iglesias, N. Izumi, J. A. Koch, O. L. Landen, A. J. MacKinnon, C. Sorce, J. A. Delettrez, V. Y. Glebov, T. C. Sangster, and C. Stoeckl, “Development of compton radiography of inertial confinement fusion implosions,” Phys. Plasmas 1 8, 056309 (2011). [CrossRef]
  35. J. Nilsen and J. H. Scofield, “Plasmas with an index of refraction greater than 1,” Opt. Lett. 29, 2677–2679 (2004). [CrossRef]
  36. J. Filevich, J. J. Rocca, M. C. Marconi, S. J. Moon, J. Nilsen, J. H. Scofield, J. Dunn, R.F. Smith, R. Keenan, J. R. Hunter, and V. N. Shlyaptsev, “Observation of multiply ionized plasma with index of refraction greater than one,” Phys. Rev. Lett. 94, 035005 (2005). [CrossRef]
  37. J. Nilsen and W. R. Johnson, “Plasma interferometry and how the bound-electron contribution can bend fringes in unexpected ways,” Appl. Opt. 44, 7295–7301 (2005). [CrossRef]
  38. D. Habs, M. M. Günther, M. Jentschel, and W. Urban, “Refractive index of silicon at gamma ray energies,” Phys. Rev. Lett. 108, 184802 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited