OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 15 — May. 20, 2013
  • pp: 3557–3566

Ground-based lidar for atmospheric boundary layer ozone measurements

Shi Kuang, Michael J. Newchurch, John Burris, and Xiong Liu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 15, pp. 3557-3566 (2013)
http://dx.doi.org/10.1364/AO.52.003557


View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

© 2013 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: February 4, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: April 24, 2013
Published: May 16, 2013

Citation
Shi Kuang, Michael J. Newchurch, John Burris, and Xiong Liu, "Ground-based lidar for atmospheric boundary layer ozone measurements," Appl. Opt. 52, 3557-3566 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-15-3557

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited