OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 15 — May. 20, 2013
  • pp: 3557–3566

Ground-based lidar for atmospheric boundary layer ozone measurements

Shi Kuang, Michael J. Newchurch, John Burris, and Xiong Liu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 15, pp. 3557-3566 (2013)
http://dx.doi.org/10.1364/AO.52.003557


View Full Text Article

Enhanced HTML    Acrobat PDF (745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

© 2013 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4950) Atmospheric and oceanic optics : Ozone
(280.1120) Remote sensing and sensors : Air pollution monitoring
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: February 4, 2013
Revised Manuscript: April 15, 2013
Manuscript Accepted: April 24, 2013
Published: May 16, 2013

Citation
Shi Kuang, Michael J. Newchurch, John Burris, and Xiong Liu, "Ground-based lidar for atmospheric boundary layer ozone measurements," Appl. Opt. 52, 3557-3566 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-15-3557


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Banta, C. J. Senff, A. B. White, M. Trainer, R. T. McNider, R. J. Valente, S. D. Mayor, R. J. Alvarez, R. M. Hardesty, D. Parrish, and F. C. Fehsenfeld, “Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode,” J. Geophys. Res. 103, 22519–22544 (1998). [CrossRef]
  2. P. Solomon, E. Cowling, G. Hidy, and C. Furiness, “Comparison of scientific findings from major ozone field studies in North America and Europe,” Atmos. Environ. 34, 1885–1920 (2000). [CrossRef]
  3. Q. Li, D. J. Jacob, I. Bey, P. I. Palmer, B. N. Duncan, B. D. Field, R. V. Martin, A. M. Fiore, R. M. Yantosca, D. D. Parrish, P. G. Simmonds, and S. J. Oltmans, “Transatlantic transport of pollution and its effects on surface ozone in Europe and North America,” J. Geophys. Res. 107, ACH 4-1–ACH 4-21 (2002).
  4. E. V. Browell, M. A. Fenn, C. F. Butler, W. B. Grant, R. C. Harriss, and M. C. Shipham, “Ozone and aerosol distributions in the summertime troposphere over Canada,” J. Geophys. Res. 99, 1739–1755 (1994). [CrossRef]
  5. R. J. Alvarez, C. J. Senff, A. O. Langford, A. M. Weickmann, D. C. Law, J. L. Machol, D. A. Merritt, R. D. Marchbanks, S. P. Sandberg, W. A. Brewer, R. M. Hardesty, and R. M. Banta, “Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling,” J. Atmos. Ocean. Technol. 28, 1258–1272 (2011). [CrossRef]
  6. A. O. Langford, C. J. Senff, R. J. Alvarez, R. M. Banta, R. M. Hardesty, D. D. Parrish, and T. B. Ryerson, “Comparison between the TOPAZ airborne ozone lidar and in situ measurements during TexAQS 2006,” J. Atmos. Ocean. Technol. 28, 1243–1257 (2011). [CrossRef]
  7. J. A. Sunesson, A. Apituley, and D. P. J. Swart, “Differential absorption lidar system for routine monitoring of tropospheric ozone,” Appl. Opt. 33, 7045–7058 (1994). [CrossRef]
  8. Y. Zhao, R. D. Marchbanks, and R. M. Hardesty, “ETL’s transportable lower-troposphere ozone lidar and its applications in air-quality studies,” Proc. SPIE 3127, 53–62 (1997). [CrossRef]
  9. S. C. Choi, Y.-J. Kim, D. H. Kim, H. K. Cha, D.-K. Ko, and J. Lee, “A differential absorption lidar (DIAL) for ozone measurements in the planetary boundary layer in an urban area,” J. Korean Phys. Soc. 44, 1432–1437 (2004).
  10. J. Machol, R. Marchbanks, C. Senff, B. McCarty, W. Eberhard, W. Brewer, R. Richter, R. Alvarez, D. Law, A. Weickmann, and S. Sandberg, “Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers,” Appl. Opt. 48, 512–524 (2009). [CrossRef]
  11. M. Bristow, D. Bundy, and A. Wright, “Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars,” Appl. Opt. 34, 4437–4452 (1995). [CrossRef]
  12. S. Kuang, J. F. Burris, M. J. Newchurch, S. Johnson, and S. Long, “Differential absorption lidar to measure subhourly variation of tropospheric ozone profiles,” IEEE Trans. Geosci. Remote Sens. 49, 557–571 (2011). [CrossRef]
  13. I. McDermid, G. Beyerle, D. Haner, and T. Leblanc, “Redesign and improved performance of the tropospheric ozone lidar at the jet propulsion laboratory table mountain facility,” Appl. Opt. 41, 7550–7555 (2002). [CrossRef]
  14. E. V. Browell, S. Ismail, and S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef]
  15. M. H. Proffitt and A. O. Langford, “Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere,” Appl. Opt. 36, 2568–2585 (1997). [CrossRef]
  16. K. A. Elsayed, S. S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, and R. J. DeYoung, “High-energy, efficient, 30 Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734–2739 (2002). [CrossRef]
  17. V. Kovalev and J. McElroy, “Differential absorption lidar measurement of vertical ozone profiles in the troposphere that contains aerosol layers with strong backscattering gradients: a simplified version,” Appl. Opt. 33, 8393–8401 (1994). [CrossRef]
  18. F. Immler, “A new algorithm for simultaneous ozone and aerosol retrieval from tropospheric DIAL measurements,” Appl. Phys. B 76, 593–596 (2003). [CrossRef]
  19. H. Eisele and T. Trickl, “Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies,” Appl. Opt. 44, 2638–2651 (2005). [CrossRef]
  20. S. Kuang, M. J. Newchurch, J. burris, L. Wang, P. Buckley, S. Johnson, K. Knupp, G. Huang, and D. Phillips, “Nocturnal ozone enhancement in the lower troposphere observed by lidar,” Atmos. Environ. 45, 6078–6084 (2011). [CrossRef]
  21. S. Kuang, M. J. Newchurch, J. Burris, L. Wang, K. Knupp, and G. Huang, “Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site,” J. Geophys. Res. 117, D18305 (2012). [CrossRef]
  22. J. Burris, T. McGee, W. Hoegy, P. Newman, L. Lait, L. Twigg, G. Sumnicht, W. Heaps, C. Hostetler, R. Neuber, and K. F. Künzi, “Lidar temperature measurements during the SOLVE campaign and the absence of polar stratospheric clouds from regions of very cold air,” J. Geophys. Res. 107, 8297 (2002). [CrossRef]
  23. NOAA, U. S. Standard Atmosphere, 1976 (Government Printing Office, 1976).
  24. D. P. Donovan, J. A. Whiteway, and A. I. Carswell, “Correction for nonlinear photon-counting effects in lidar systems,” Appl. Opt. 32, 6742–6753 (1993). [CrossRef]
  25. R. Newsom, D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009). [CrossRef]
  26. F. Cairo, F. Congeduti, M. Poli, S. Centurioni, and G. Di Donfrancesco, “A survey of the signal-induced noise in photomultiplier detection of wide dynamics luminous signals,” Rev. Sci. Instrum. 67, 3274–3280 (1996). [CrossRef]
  27. G. J. Megie, G. Ancellet, and J. Pelon, “Lidar measurements of ozone vertical profiles,” Appl. Opt. 24, 3454–3463 (1985). [CrossRef]
  28. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964). [CrossRef]
  29. S. Godin-Beekmann, J. Porteneuve, and A. Garnier, “Systematic DIAL lidar monitoring of the stratospheric ozone vertical distribution at observatoire de haute-provence (43.92°N, 5.71°E),” J. Environ. Monit. 5, 57–67 (2003). [CrossRef]
  30. R. W. Schafer, “What is a Savitzky–Golay filter? [lecture notes],” IEEE Signal Process. Mag. 28(4), 111–117 (2011). [CrossRef]
  31. S. Godin, A. Carswell, D. Donovan, H. Claude, W. Steinbrecht, I. McDermid, T. McGee, M. Gross, H. Nakane, D. Swart, H. Bergwerff, O. Uchino, P. von der Gathen, and R. Neuber, “Ozone differential absorption lidar algorithm intercomparison,” Appl. Opt. 38, 6225–6236 (1999). [CrossRef]
  32. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bsenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370–5385 (2004). [CrossRef]
  33. G. Beyerle and I. McDermid, “Altitude range resolution of differential absorption lidar ozone profiles,” Appl. Opt. 38, 924–927 (1999). [CrossRef]
  34. W. D. Komhyr, “Electrochemical cells for gas analysis,” Ann. Geophys. 25, 203–210 (1969).
  35. W. D. Komhyr, R. A. Barnes, G. B. Brothers, J. A. Lanthrop, and D. P. Opperman, “Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989,” J. Geophys. Res. 100, 9231–9244 (1995). [CrossRef]
  36. H. G. J. Smit, W. Straeter, B. J. Johnson, S. J. Oltmans, J. Davies, D. W. Tarasick, B. Hoegger, R. Stubi, F. J. Schmidlin, T. Northam, A. M. Thompson, J. C. Witte, I. Boyd, and F. Posny, “Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: insights from the Juelich ozone sonde intercomparison experiment (JOSIE),” J. Geophys. Res. 112, D19306 (2007). [CrossRef]
  37. B. J. Johnson, D. Helmig, and S. Oltmans, “Evaluation of ozone measurements from a tethered balloon-sampling platform at South Pole station in December 2003,” Atmos. Environ. 42, 2780–2787 (2008). [CrossRef]
  38. C. M. Berkowitz, T. Jobson, G. Jiang, C. W. Spicer, and P. V. Doskey, “Chemical and meteorological characteristics associated with rapid increases of O3 in Houston, Texas,” J. Geophys. Res. 109, D10307 (2004). [CrossRef]
  39. R. M. Banta, C. J. Senff, R. J. Alvarez, A. O. Langford, D. D. Parrish, M. K. Trainer, L. S. Darby, R. M. Hardesty, B. Lambeth, J. A. Neuman, W. M. Angevine, J. Nielsen-Gammon, S. P. Sandberg, and A. B. White, “Dependence of daily peak O3 concentrations near Houston, Texas on environmental factors: wind speed, temperature, and boundary-layer depth,” Atmos. Environ. 45, 162–173 (2011). [CrossRef]
  40. A. Pour-Biazar, R. T. McNider, S. J. Roselle, R. Suggs, G. Jedlovec, D. W. Byun, S. Kim, C. J. Lin, T. C. Ho, S. Haines, B. Dornblaser, and R. Cameron, “Correcting photolysis rates on the basis of satellite observed clouds,” J. Geophys. Res. 112, D10302 (2007). [CrossRef]
  41. M. R. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  42. A. Papayannis, G. Ancellet, J. Pelon, and G. Mègie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990). [CrossRef]
  43. M. J. Newchurch, M. A. Ayoub, S. Oltmans, B. Johnson, and F. J. Schmidlin, “Vertical distribution of ozone at four sites in the United States,” J. Geophys. Res. 108, 4031 (2003). [CrossRef]
  44. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981). [CrossRef]
  45. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef]
  46. F. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef]
  47. O. Uchino and I. Tabata, “Mobile lidar for simultaneous measurements of ozone, aerosols, and temperature in the stratosphere,” Appl. Opt. 30, 2005–2012 (1991). [CrossRef]
  48. J. Orphal, “A critical review of the absorption cross-sections of O3 and NO2 in the 240–790 nm region,” J. Photochem. Photobiol. A 157, 185–209 (2003). [CrossRef]
  49. D. Daumont, J. Brion, J. Charbonnier, and J. Malicet, “Ozone UV spectroscopy I: absorption cross-sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992). [CrossRef]
  50. J. Brion, A. Chakir, D. Daumont, and J. Malicet, “High-resolution laboratory absorption cross section of O3 temperature effect,” Chem. Phys. Lett. 213, 610–612 (1993). [CrossRef]
  51. C. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy, II. Absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995). [CrossRef]
  52. J. Brion, A. Chakir, J. Charbonnier, D. Daumont, C. Parisse, and J. Malicet, “Absorption spectra measurements for the ozone molecule in the 350–830 nm region,” J. Atmos. Chem. 30, 291–299 (1998). [CrossRef]
  53. X. Liu, K. Chance, C. E. Sioris, and T. P. Kurosu, “Impact of using different ozone cross sections on ozone profile retrievals from global ozone monitoring experiment (GOME) ultraviolet measurements,” Atmos. Chem. Phys. 7, 3571–3578 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited