OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 16 — Jun. 1, 2013
  • pp: 3757–3763

Electric-field-induced optical path length change in LiNbO3:MgO crystals: spatial anisotropy analysis

Anatoliy S. Andrushchak, Oleh V. Yurkevych, Bogdan M. Strychalyuk, Mykhailo M. Klymash, Andrzej Rusek, and Andriy V. Kityk  »View Author Affiliations


Applied Optics, Vol. 52, Issue 16, pp. 3757-3763 (2013)
http://dx.doi.org/10.1364/AO.52.003757


View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we describe the methodology behind the calculation of the indicative surfaces (ISs) of the electric-field-induced optical path length change (EFIOPC) in anisotropic crystal materials accounting for the piezoelectric deformation. It is considered in detail for a particular case of 3m point group symmetry and applied to LiNbO3 single crystals doped with 7 mol. % MgO (hereafter LiNbO3:MgO). The contribution of the inverse piezoelectricity into EFIOPC appears to be considerable and, in many cases, modifying, for instance, the spherical coordinates of the extreme directions or even leading to the appearance of new directional maxima on relevant ISs. The ISs of EFIOPC are of considerable practical importance as they allow us to determine an optimal geometry for electro-optic coupling. The spatial anisotropic analysis of EFIOPC in LiNbO3:MgO crystals suggests that the lowest effective driving voltage is provided by electro-optic cells representing the rectangular slabs of X/50° crystal cut. The modulation efficiency of such electro-optic cells is about 1.5 times better than ones fabricated in the usual way (i.e., as rectangular crystal slabs with the faces parallel to the principal crystallographic directions).

© 2013 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(250.4110) Optoelectronics : Modulators

ToC Category:
Materials

History
Original Manuscript: February 15, 2013
Revised Manuscript: April 5, 2013
Manuscript Accepted: April 5, 2013
Published: May 30, 2013

Citation
Anatoliy S. Andrushchak, Oleh V. Yurkevych, Bogdan M. Strychalyuk, Mykhailo M. Klymash, Andrzej Rusek, and Andriy V. Kityk, "Electric-field-induced optical path length change in LiNbO3:MgO crystals: spatial anisotropy analysis," Appl. Opt. 52, 3757-3763 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-16-3757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. S. Kuzminov, Electro-Optical and Nonlinear Optical Crystal of Lithium Niobate (Nauka, 1987) [in Russian], p. 264.
  2. S. Park and I.-K. Jeong, “Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a Rietveld analysis,” J. Korean Phys. Soc. 59, 2756–2759 (2011). [CrossRef]
  3. E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “A design method of lithium niobate on insulator ridge waveguides without leakage loss,” Opt. Express 19, 15833–15842 (2011). [CrossRef]
  4. B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009). [CrossRef]
  5. A. S. Andrushchak, E. M. Chernyhivsky, Z. Yu. Gotra, M. V. Kaidan, A. V. Kityk, N. A. Andrushchak, T. A. Maksymyuk, B. G. Mytsyk, and W. Schranz, “Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals,” J. Appl. Phys. 108, 103118 (2010). [CrossRef]
  6. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012). [CrossRef]
  7. T. Inoue and T. Suhara, “Electro-optic Bragg deflection modulator using periodically poled MgO:LiNbO3,” IEEE Photon. Technol. Lett. 23, 1252–1254 (2011).
  8. J. M. Cannata, T. A. Ritter, Wo-Hsing Chen, R. H. Silverman, and K. K. Shung, “Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1548–1557 (2003). [CrossRef]
  9. S. Kotopoulis, Han Wang, S. Cochran, and M. Postema, “Lithium niobate ultrasound transducers for high-resolution focused ultrasound surgery,” 2010 IEEE Ultrasonics Symposium, San Diego, California, 11–14 October (2010), pp. 72–75.
  10. A. Baba, C. T. Searfass, and B. R. Tittmann, “High temperature ultrasonic transducer up to 1000°C using lithium niobate single crystal,” Appl. Phys. Lett. 97, 232901 (2010). [CrossRef]
  11. M. P. Bernal, M. Roussey, F. Baida, S. Benchabane, A. Khelif, and V. Laude, “Photonic and phononic band gap properties of lithium niobate,” Ferroelectric Crystals for Photonic Applications (Springer, 2009), Vol. 91, pp. 307–336.
  12. W. Luo, J. Deng, Q. Fu, G. Yan, D. Zhou, and Sh. Gong, “An integrated passive impedance-loaded SAW sensor,” 14th International Meeting on Chemical Sensors, Nuremberg, Germany, 20–23 May (2012), pp. 1403–1406.
  13. H. Hirori and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3 and applications to nonlinear optics,” Proc. SPIE 8240, 82400B (2012).
  14. Y. Chen, G. Liu, Y. Zheng, and F. Geng, “Periodically poled Ti-diffused near-stoichiometric MgO:LiNbO3 waveguide nonlinear-optic wavelength converter,” Opt. Express 17, 4834–4841 (2009). [CrossRef]
  15. I. P. Kaminow, Li Tingye, and A. E. Willner, Optical Fiber Telecommunications (Academic, 2008), Vol. V, p. 915.
  16. D. Yu. Sugak, A. O. Matkovskii, I. M. Solskii, B. M. Kopko, V. Ya. Oliinyk, I. V. Stefanskii, V. M. Gaba, V. V. Grabovskii, I. M. Zaritskii, and L. G. Rakitina, “Growth and optical properties of LiNbO3:MgO single crystals,” Cryst. Res. Technol. 32, 805–811 (1997). [CrossRef]
  17. A. S. Andrushchak, B. G. Mytsyk, N. M. Demyanyshyn, M. V. Kaidan, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and W. Schranz, “Spatial anisotropy of linear electro-optic effect for crystal materials: II. Indicative surfaces as efficient tool for electro-optic coupling optimization,” Opt. Lasers. Eng. 47, 24–30 (2009). [CrossRef]
  18. A. S. Andrushchak, B. G. Mytsyk, N. M. Demyanyshyn, M. V. Kaidan, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and W. Schranz, “Spatial anisotropy of linear electro-optic effect for crystal materials: I. Experimental determination of electro-optic tensor by means of interferometric technique,” Opt. Lasers Eng. 47, 31–38 (2009). [CrossRef]
  19. T. S. Narasimhamurty, Photoelastic and Electro-Optic Properties of Crystals (Plenum, 1981), p. 624.
  20. L. Duvillaret, S. Rialland, and J.-L. Coutaz, “Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation,” J. Opt. Soc. Am. B 19, 2704–2715 (2002). [CrossRef]
  21. O. G. Vlokh, B. G. Mytsyk, A. S. Andrushchak, and Ya. V. Pryriz, “Spatial distribution of piezo-induced change in the optical path length in lithium niobate crystals,” Crystallogr. Rep. 45, 138–144 (2000). [CrossRef]
  22. A. S. Andrushchak, B. G. Mytsyk, H. P. Laba, O. V. Yurkevych, I. M. Solskii, A. V. Kityk, and B. Sahraoui, “Elastic and photoelastic constants of pure and MgO doped lithium niobate crystals,” J. Appl. Phys. 106, 073510(6) (2009). [CrossRef]
  23. V. L. German, “Some theorems on the anisotropic environments,” Report Academy Sci. USSR 48, 95–98 (1945) [in Russian].
  24. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University, 1985), p. 333.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited