OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 16 — Jun. 1, 2013
  • pp: 3770–3776

Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors

Aldo Minardo, Giuseppe Porcaro, Daniele Giannetta, Romeo Bernini, and Luigi Zeni  »View Author Affiliations

Applied Optics, Vol. 52, Issue 16, pp. 3770-3776 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of a Brillouin distributed sensor for the monitoring of railway traffic is presented in this work. The field test is performed on the Italian regional line San Severo–Peschici, operated by Ferrovie del Gargano. A single-mode optical fiber sensor was attached along a rail length of about 60 m. The strain associated with train passage was acquired along the monitored rail length at 31 Hz acquisition rate and 1 m spatial resolution. The data acquired by the sensor demonstrates its capability of retrieving useful information in railway traffic monitoring, such as train identification, axle counting, speed detection, and dynamic load calculation.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:

Original Manuscript: February 19, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 26, 2013
Published: May 30, 2013

Aldo Minardo, Giuseppe Porcaro, Daniele Giannetta, Romeo Bernini, and Luigi Zeni, "Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors," Appl. Opt. 52, 3770-3776 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. O. Nielsen and A. Johansson, “Out-of-round railway wheels—a literature survey,” Proc. Inst. Mech. Eng. F 214, 79–91 (2000). [CrossRef]
  2. T. H. T. Chana, L. Yua, H. Y. Tamb, Y. Q. Nia, S. Y. Liub, W. H. Chungb, and L. K. Chengc, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation,” Eng. struct. 28, 648–659 (2006). [CrossRef]
  3. C. L. Wei, C. C. Lai, S. Y. Liu, W. H. Chung, T. K. Ho, H. Y. Tam, S. L. Ho, and A. McCusker, “A fiber Bragg grating sensor system for train axle counting,” IEEE Sens. J. 10, 1905–1912 (2010). [CrossRef]
  4. C. Wei, Q. Xin, W. H. Chung, S. Liu, H. Tam, and S. L. Ho, “Real-time train wheel condition monitoring by fiber Bragg grating sensors,” Int. J. Distributed Sens. Netw. 2012, 409048 (2011).
  5. H. Y. Tam, S. Y. Liu, B. O. Guan, W. H. Chung, T. H. T. Chan, and L. K. Cheng, “Fiber Bragg grating sensors for structural and railway applications,” Proc. SPIE 5634, 85–97 (2005). [CrossRef]
  6. M. L. Filograno, P. C. Guillén, A. Rodrìguez-Barrios, S. Martin-Lopez, M. Rodriguez-Plaza, A. Andrés-Alguacil, and M. Gonzalés-Herraez, “Real-time monitoring of railway traffic using fiber Bragg grating sensors,” IEEE Sens. J. 12, 85–92 (2012). [CrossRef]
  7. R. Kluth, D. Watley, M. Farhadiroushan, D. S. Park, S. U. Lee, J. Y. Kim, and Y. S. Kim, “Case studies on distributed temperature and strain sensing (DTSS) by using optic fibre,” http://www.sensornet.co.uk/files/article/Sensornet_Case_Studies_on_Distributed_Temperature_and_Strain_Sensing_(DTSS.pdf) .
  8. H. J. Yoon, K. Y. Song, J. S. Kim, and D. S. Kim, “Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis,” NDT&E Int. 44, 637–644 (2011). [CrossRef]
  9. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997). [CrossRef]
  10. A. Minardo, R. Bernini, L. Amato, and L. Zeni, “Bridge monitoring using Brillouin fiber-optic sensors,” IEEE Sens. J. 12, 145–150 (2012). [CrossRef]
  11. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34, 2613–2615 (2009). [CrossRef]
  12. Q. Cui, S. Pamukcu, X. Wen, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett. 23, 1887–1889 (2011). [CrossRef]
  13. T. Dahlberg, Railway Track Dynamics—A Survey (Linköping University, 2003), p. 1313.
  14. D. I. McLean and M. L. Marsh, Dynamic Impact Factors for Bridges, vol. 266National Cooperative Highway Research Program Synthesis of Highway Practice Series (Transportation Research Board, 1998).
  15. J. Eisenmann and R. Rump, “Ein Schotteroberbau für hohe Geschwindigkeiten,” ETR: Eisenbahntechnische Rundschau 46, 99–108 (1997).
  16. M. W. Khordehbinan, “Investigation on the effect of railway track support system characteristics on the values of track modulus,” in Proceedings of AREMA (AREMA, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited