OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 16 — Jun. 1, 2013
  • pp: 3824–3828

Temperature-dependent Sellmeier equations for rare-earth sesquioxides

David E. Zelmon, Jessica M. Northridge, Nicholas D. Haynes, Dan Perlov, and Klaus Petermann  »View Author Affiliations

Applied Optics, Vol. 52, Issue 16, pp. 3824-3828 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (433 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-power lasers are making increasing demands on laser hosts especially in the area of thermal management. Traditional hosts, such as YAG, are unsuitable for many high-power applications and therefore, new hosts are being developed including rare-earth sesquioxides. We report new measurements of the refractive indices of these materials as functions of wavelength and temperature, which will aid in the design of laser cavities and other nonlinear optical elements.

© 2013 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 21, 2013
Revised Manuscript: February 21, 2013
Manuscript Accepted: February 25, 2013
Published: May 30, 2013

David E. Zelmon, Jessica M. Northridge, Nicholas D. Haynes, Dan Perlov, and Klaus Petermann, "Temperature-dependent Sellmeier equations for rare-earth sesquioxides," Appl. Opt. 52, 3824-3828 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express 12, 3125–3130 (2004). [CrossRef]
  2. K. Petermann, L. Fornasiero, E. Mix, and V. Peters, “High melting sesquioxides: crystal growth, spectroscopy, and laser experiments,” Opt. Mater. 19, 67–71 (2002). [CrossRef]
  3. V. Peters, “Growth and spectroscopy of ytterbium doped sesquioxides,” Ph.D. dissertation (University of Hamburg, 2001).
  4. O. Medenbach and R. D. Shannon, “Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small prism technique,” J. Opt. Soc. Am. A 14, 3299–3318 (1997). [CrossRef]
  5. O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, “Refractive index and optical dispersion of rare earth oxides using a small prism technique,” J. Opt. A 3, 174–177 (2001). [CrossRef]
  6. A. A. Kaminski, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohaty, A. Shirakawa, M. Tokurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host ceramics for Ln3+ lasants,” Laser Phys. Lett. 5, 300–303 (2008). [CrossRef]
  7. Y. Nigara, “Measurement of the optical constants of yttrium oxide,” Jpn. J. Appl. Phys. 7, 404–408 (1968). [CrossRef]
  8. C. H. Lange and D. D. Duncan, “Temperature coefficient of refractive index for candidate optical windows,” Proc. SPIE 1326, 71–78 (1990). [CrossRef]
  9. F. Schmid, “New approach to high temperature crystal growth from the melt,” Solid State Technol. 16, 45–48 (1973).
  10. R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization, and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310, 1934–1938 (2008). [CrossRef]
  11. R. Peters, K. Petermann, and G. Huber, “Growth technology and laser properties of Yb-doped sesquioxides,” in Crystal Growth Technology, P. Capper and P. Rudolph, eds. (Wiley-VCH Verlag, 2010), pp 267–282.
  12. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2002).
  13. A. Joshi, N. D. Haynes, D. E. Zelmon, O. Staffsudd, and R. Shori, “Impurity concentration and temperature dependence of the refractive indices of Er3+ ceramic Y2O3,” Opt. Express 20, 4428–4435 (2012). [CrossRef]
  14. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963). [CrossRef]
  15. A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical materials characterization,” National Bureau of Standards Technical Note 993, (1978).
  16. M. V. Hobden and J. Warner, “Temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966). [CrossRef]
  17. G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A. Savage, “LiNbO3: an efficient phase matchable nonlinear optical material,” Appl. Phys. Lett. 5, 234–236 (1964). [CrossRef]
  18. G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J. Appl. Phys. 38, 1941–1943 (1967). [CrossRef]
  19. G. J. Edwards and M. Lawrence, “A temperature dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]
  20. A. Manoogian and A. LeClerc, “Determination of the dilation and vibrational contributions to the energy band gaps in germanium and silicon,” Phys. Status Solidi B 92, K23–K27 (1979). [CrossRef]
  21. A. Manoogian and J. C. Woolley, “Temperature dependence of the energy gap in semiconductors,” Can. J. Phys. 62, 285–287 (1984).
  22. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613–15620 (1993). [CrossRef]
  23. U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994). [CrossRef]
  24. M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals I. Linear response,” Phys. Rev. B. 41, 3372–3382 (1990). [CrossRef]
  25. M. E. Lines, “Bond orbital theory of linear and nonlinear electronic response in ionic crystals II. Nonlinear response,” Phys. Rev. B 41, 3383–3390 (1990). [CrossRef]
  26. M. E. Lines, “Physical origin of the temperature dependence of the chromatic dispersion in fused silica,” J. Appl. Phys. 73, 2075–2079 (1993). [CrossRef]
  27. H. Y. Fan, “Temperature dependence of the energy gap in semiconductors,” Phys. Rev. 82, 900–905 (1951). [CrossRef]
  28. A. Radowsky, “Temperature dependence of electron energy levels in solids,” Phys. Rev. 73, 749–761 (1948). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited