OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 16 — Jun. 1, 2013
  • pp: 3829–3832

Antireflection coatings optimized for single-cycle THz pulses

Fabian D. J. Brunner and Thomas Feurer  »View Author Affiliations


Applied Optics, Vol. 52, Issue 16, pp. 3829-3832 (2013)
http://dx.doi.org/10.1364/AO.52.003829


View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that a single-layer antireflection coating on a THz source of high refractive index can substantially increase the transmission of emitted THz pulses. Calculations indicate that the optimum coating thickness depends on the exact shape of the generated THz waveform and whether the transmitted waveform is to be optimized for the highest peak (temporal) amplitude, peak spectral amplitude, or pulse energy. We experimentally demonstrate a 15% increase in peak amplitude, a 33% increase in peak spectral amplitude, and a 48% increase in energy for a 100 μm thick fused silica AR coating on a lithium niobate crystal used as THz emitter.

© 2013 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(300.6495) Spectroscopy : Spectroscopy, teraherz
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

History
Original Manuscript: March 7, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 27, 2013
Published: May 30, 2013

Citation
Fabian D. J. Brunner and Thomas Feurer, "Antireflection coatings optimized for single-cycle THz pulses," Appl. Opt. 52, 3829-3832 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-16-3829


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Schall, M. Walther, and P. U. Jepsen, “Fundamental and second-order phonon processes in CdTe and ZnTe,” Phys. Rev. B 64, 094301 (2001). [CrossRef]
  2. D. F. Parsons and P. D. Coleman, “Far infrared optical constants of gallium phosphide,” Appl. Opt. 10, 1683–1685 (1971). [CrossRef]
  3. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  4. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97, 123505 (2005). [CrossRef]
  5. M. C. Hoffmann and J. A. Fülöp, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 083001 (2011). [CrossRef]
  6. Y. W. Chen, P. Han, X.-C. Zhang, M.-L. Kuo, and S.-Y. Lin, “Three-dimensional inverted photonic grating with engineerable refractive indices for broadband antireflection of terahertz waves,” Opt. Lett. 35, 3159–3161 (2010). [CrossRef]
  7. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006). [CrossRef]
  8. F. D. J. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinšek, A. Schneider, and P. Günter, “A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16, 16496–16508 (2008). [CrossRef]
  9. F. D. J. Brunner, A. Schneider, and P. Günter, “Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser,” Appl. Phys. Lett. 94, 061119 (2009). [CrossRef]
  10. K. Kawase and N. Hiromoto, “Terahertz-wave antireflection coating on Ge and GaAs with fused quartz,” Appl. Opt. 37, 1862–1866 (1998). [CrossRef]
  11. D. B. Fenner, J. M. Hensley, M. G. Allen, J. Xu, and A. Tredicucci, “Antireflection coating for external-cavity quantum cascade laser near 5 THz,” Mater. Res. Soc. Symp. Proc. 1016, CC07-03 (2007). [CrossRef]
  12. C. R. Englert, M. Birk, and H. Maurer, “Antireflection coated, wedged, single-crystal silicon aircraft window for the far-infrared,” IEEE Trans. Geosci. Remote Sens. 37, 1997–2003 (1999). [CrossRef]
  13. A. J. Gatesman, J. Waldman, M. Ji, C. Musante, and S. Yagvesson, “An anti-reflection coating for silicon optics at terahertz frequencies,” IEEE Microw. Guided Wave Lett. 10, 264–266 (2000). [CrossRef]
  14. I. Hosako, “Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics,” Appl. Opt. 42, 4045–4048 (2003). [CrossRef]
  15. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996). [CrossRef]
  16. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989). [CrossRef]
  17. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1  MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98, 091106 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited