OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 17 — Jun. 10, 2013
  • pp: 4035–4041

Adjustments of dielectrics craters and their surfaces by ultrafast laser pulse train based on localized electron dynamics control

Yanping Yuan, Lan Jiang, Xin Li, Cong Wang, Lei Yuan, Liangti Qu, and Yongfeng Lu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 17, pp. 4035-4041 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1052 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantum model with the consideration of laser wave-particle duality based on the plasma model is employed for the femtosecond laser pulse train processing of fused silica. Effects of the key pulse train parameters, such as the pulse separation time and the number of pulses per train on the distributions of free electron are discussed. The calculations show that the spatial/temporal distributions of free electron can be adjusted by transient localized electron dynamics control using femtosecond laser pulse train design; the results are ablation shapes of craters and subwavelength ripples. It is also found that the first pulse separation time (Δt1) can be used for rough adjustments of ablated structures, while the second pulse separation time (Δt2) can be used for the fine tuning of ablated structures, especially the shapes of craters.

© 2013 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.7090) Ultrafast optics : Ultrafast lasers
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 18, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: April 26, 2013
Published: June 7, 2013

Yanping Yuan, Lan Jiang, Xin Li, Cong Wang, Lei Yuan, Liangti Qu, and Yongfeng Lu, "Adjustments of dielectrics craters and their surfaces by ultrafast laser pulse train based on localized electron dynamics control," Appl. Opt. 52, 4035-4041 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167 (2000). [CrossRef]
  2. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000). [CrossRef]
  3. L. Jiang and H. L. Tsai, “Improved two-temperature model and its application in ultrashort laser heating of metal films,” J. Heat Transfer 127, 1167–1173 (2005). [CrossRef]
  4. I. Martín-Fabiani, E. Rebollar, S. Pérez, D. R. Rueda, M. C. García-Gutiérrez, A. Szymczyk, Z. Roslaniec, M. Castillejo, and T. A. Ezquerra, “Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films,” Langmuir 28, 7938–7945 (2012). [CrossRef]
  5. J. P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, and F. Pigeon, “Effects of electron–phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals,” J. Appl. Phys. 111, 024902 (2012). [CrossRef]
  6. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica,” Appl. Phys. Lett. 102, 054102 (2013). [CrossRef]
  7. N. C. Kerr, S. E. Clark, and D. C. Emmony, “High resolution imaging studies into the formation of laser-induced periodic surface structures,” Appl. Opt. 28, 3718–3724 (1989). [CrossRef]
  8. H. M. van Driel, J. E. Sipe, and J. F. Young, “Laser-induced periodic surface structure on solids: a universal phenomenon,” Phys. Rev. Lett. 49, 1955–1958 (1982). [CrossRef]
  9. P. M. Fauchet and A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824–826 (1982). [CrossRef]
  10. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010). [CrossRef]
  11. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, T. Velten, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13, 6651–6656 (2005). [CrossRef]
  12. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, “Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation,” Proc. SPIE 5662, 168 (2004). [CrossRef]
  13. R. Le Harzic, D. Dörr, D. Sauer, M. Neumeier, M. Epple, H. Zimmermann, and F. Stracke, “Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule–femtosecond laser at high repetition rate,” Opt. Lett. 36, 229–231 (2011). [CrossRef]
  14. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, “Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light,” Appl. Surf. Sci. 252, 4702–4706 (2006). [CrossRef]
  15. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006). [CrossRef]
  16. Y. P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y. F. Lu, and H. L. Tsai, “Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse trains processing of dielectrics,” J. Phys. D 45, 175301 (2012). [CrossRef]
  17. E. M. Hsu, T. H. Crawford, H. F. Tiedje, and H. K. Haugen, “Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm,” Appl. Phys. Lett. 91, 111102 (2007). [CrossRef]
  18. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010). [CrossRef]
  19. Y. P. Yuan, L. Jiang, X. Li, C. Wang, L. T. Qu, and Y. F. Lu, “Simulation of rippled structure adjustments based on localized transient electron dynamics control by femtosecond laser pulse trains,” Appl. Phys. A 111, 813–819 (2013).
  20. M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, and Z. Z. Xu, “The morphological and optical characteristics of femtosecond laser-induced large-area micro/nanostructures on GaAs, Si, and brass,” Opt. Express 18(S4 ), A600–A619 (2010). [CrossRef]
  21. C. Albu, A. Dinescu, M. Filipescu, M. Ulmeanu, and M. Zamfirescu, “Periodical structures induced by femtosecond laser on metals in air and liquid environments,” Appl. Surf. Sci. (to be published). [CrossRef]
  22. Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012). [CrossRef]
  23. H. Dachraoui and W. Husinsky, “Thresholds of plasma formation in silicon identified by optimizing the ablation laser pulse form,” Phys. Rev. Lett. 97, 107601 (2006). [CrossRef]
  24. R. Hergenröder, M. Miclea, and V. Hommes, “Controlling semiconductor nanoparticle size distributions with tailored ultrashort pulses,” Nanotechnology 17, 4065–4071 (2006). [CrossRef]
  25. J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard, and R. Stoian, “Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: consequences for material removal from Al samples,” Phys. Rev. B 74, 224106 (2006). [CrossRef]
  26. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, “Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses,” Chem. Phys. Lett. 423, 197–201 (2006). [CrossRef]
  27. A. Mermillod-Blondin, I. M. Burakov, Y. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, A. Rosenfeld, A. Husakou, I. V. Hertel, and R. Stoian, “Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates,” Phys. Rev. B 77, 104205 (2008). [CrossRef]
  28. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Dynamic temporal pulse shaping in advanced ultrafast laser material processing,” Appl. Phys. A 77, 265–269 (2003).
  29. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005). [CrossRef]
  30. L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37, 2781–2783 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited