OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 17 — Jun. 10, 2013
  • pp: 4054–4061

Determination of piezo-optic coefficients of crystals by means of four-point bending

Oleg Krupych, Viktoriya Savaryn, Andriy Krupych, Ivan Klymiv, and Rostyslav Vlokh  »View Author Affiliations

Applied Optics, Vol. 52, Issue 17, pp. 4054-4061 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique developed recently for determining piezo-optic coefficients (POCs) of isotropic optical media, which represents a combination of digital imaging laser interferometry and a classical four-point bending method, is generalized and applied to a single-crystalline anisotropic material. The peculiarities of measuring procedures and data processing for the case of optically uniaxial crystals are described in detail. The capabilities of the technique are tested on the example of canonical nonlinear optical crystal LiNbO3. The high precision achieved in determination of the POCs for isotropic and anisotropic materials testifies that the technique should be both versatile and reliable.

© 2013 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.3730) Materials : Lithium niobate
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.3160) Physical optics : Interference
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

Original Manuscript: March 18, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: May 7, 2013
Published: June 7, 2013

Oleg Krupych, Viktoriya Savaryn, Andriy Krupych, Ivan Klymiv, and Rostyslav Vlokh, "Determination of piezo-optic coefficients of crystals by means of four-point bending," Appl. Opt. 52, 4054-4061 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. I. Grakh and A. F. Mozhanskaya, “A type of mechanically anisotropic, optically sensitive material,” Mekh. Polim. 5, 835–839 (1971). [CrossRef]
  2. Y.-J. Weber, “Determination of internal strain by optical measurements,” Phys. Rev. B 51, 12209–12215 (1995). [CrossRef]
  3. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).
  4. I. I. Slezinger, A. N. Alievskaya, and Yu. V. Mironov, “Piezooptic devices,” Izmer. Tekh. 12, 17–19 (1985). [CrossRef]
  5. M. Billardon and J. Badoz, “Birefringence modulator,” C. R. Acad. Sci. Ser. B 262, 1672–1675 (1966).
  6. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-known effect,” J. Opt. Soc. Am. 59, 950–954 (1969).
  7. B. A. Auld, Acoustic Fields and Waves in Solids. (Krieger, 1990).
  8. V. I. Balakshii, V. N. Parygin, and L. E. Chirkov, Physical Fundamentals of Acoustooptics (Radio i Sviaz’, 1985).
  9. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  10. M. P. Shaskolskaya, Acoustic Crystals (Nauka, 1982).
  11. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  12. O. Krupych, V. Savaryn, I. Skab, and R. Vlokh, “Interferometric measurements of piezooptic coefficients by means of four-point bending method,” Ukr. J. Phys. Opt. 12, 150–159 (2011). [CrossRef]
  13. B. H. Mytsyk, “Methods for the studies of the piezo-optical effect in crystals and the analysis of experimental data. Part I. Methodology for the studies of piezo-optical effect,” Ukr. J. Phys. Opt. 4, 1–26 (2003). [CrossRef]
  14. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1975).
  15. F. Pockels, Lehrbuch der Kristallooptik (Teubner Berlin, 1906).
  16. Yu. Vasylkiv, O. Kvasnyuk, O. Krupych, O. Mys, O. Maksymuk, and R. Vlokh, “Reconstruction of 3D stress fields basing on piezooptic experiment,” Ukr. J. Phys. Opt. 10, 22–37 (2009). [CrossRef]
  17. B. Mytsyk, N. Demyanyshyn, I. Martynyuk-Lototska, and R. Vlokh, “Piezooptic, photoelastic and acoustooptic properties of SrB4O7 crystals,” Appl. Opt. 50, 3889–3895 (2011). [CrossRef]
  18. I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezooptic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011). [CrossRef]
  19. V. Savaryn, I. Skab, O. Krupych, and R. Vlokh, “The method for measuring piezooptic coefficients of crystals using a crystalline disk loaded along its diameter,” Ukr. J. Phys. Opt. 13, 82–123 (2012). [CrossRef]
  20. Yu. Vasylkiv, V. Savaryn, I. Smaga, O. Krupych, I. Skab, and R. Vlokh, “Studies of piezooptic coefficients in LiNbO3 crystals using a crystalline disk compressed along its diameter,” Ukr. J. Phys. Opt. 12, 180–190 (2011). [CrossRef]
  21. S. P. Timoshenko, Strength of Materials (Izdatelstvo NTL, 1965).
  22. B. G. Mytsyk, A. S. Andrushchak, N. M. Demyanyshyn, Y. P. Kost, A. V. Kityk, P. Mandracci, and W. Schranz, “Piezo-optic coefficients of MgO-doped LiNbO3 crystals,” Appl. Opt. 48, 1904–1911 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited