OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4123–4130

Size effect on the optical limiting in suspensions of detonation nanodiamond clusters

Viatcheslav Vanyukov, Tatyana Mogileva, Gennady Mikheev, Aleksey Puzir, Vladimir Bondar, and Yuri Svirko  »View Author Affiliations


Applied Optics, Vol. 52, Issue 18, pp. 4123-4130 (2013)
http://dx.doi.org/10.1364/AO.52.004123


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the optical limiting (OL) in stable aqueous suspensions of detonation nanodiamond (ND) clusters with average size of 50, 110, and 320 nm. The nanosecond Z-scan measurements at wavelength of 532 nm revealed that the larger the cluster size, the better the OL performance and the higher the ray stability of the ND suspension. Our analysis showed that the nonlinear scattering and the nonlinear absorption are the dominant mechanisms of OL in aqueous ND suspensions.

© 2013 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: February 26, 2013
Revised Manuscript: May 10, 2013
Manuscript Accepted: May 14, 2013
Published: June 12, 2013

Citation
Viatcheslav Vanyukov, Tatyana Mogileva, Gennady Mikheev, Aleksey Puzir, Vladimir Bondar, and Yuri Svirko, "Size effect on the optical limiting in suspensions of detonation nanodiamond clusters," Appl. Opt. 52, 4123-4130 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-18-4123


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. W. Tutt and T. F. Bogges, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17, 299–338 (1993). [CrossRef]
  2. L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356, 225–226 (1992). [CrossRef]
  3. Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett. 126, 280–284 (1986). [CrossRef]
  4. C. Zhang, Y. Song, F. Kuhn, Y. Wang, X. Xin, and W. Herrman, “Ultrafast response and superior optical limiting effects of planar “open” heterothiometallic clusters,” Adv. Mater. 14, 818–822 (2002). [CrossRef]
  5. B. Wang, Y. Chen, R. Li, H. Dong, L. Zhang, M. Lotya, J. Coleman, and W. Blau, “Nonlinear optical properties of graphene and carbon nanotube composites,” in Carbon Nanotubes—Synthesis, Characterization, Application, S. Yellampalli, ed. (InTech, 2011), pp. 397–424.
  6. D. Vincent, S. Petit, and S. Chin, “Optical limiting studies in a carbon-black suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41, 2944–2946 (2002). [CrossRef]
  7. Y. Li, J. Zhu, Y. Chen, J. Zhang, J. Wang, Y. He, and W. Blau, “Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine,” Nanotech. 22, 1–7 (2011).
  8. L. Vivien, P. Lancon, D. Riehl, F. Hache, and E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002). [CrossRef]
  9. E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357, 336–340 (2002). [CrossRef]
  10. G. M. Mikheev, A. P. Puzyr, V. V. Vanyukov, K. V. Purtov, T. N. Mogileva, and V. S. Bondar, “Nonlinear scattering of light in nanodiamond hydrosol,” Tech. Phys. Lett. 36, 358–361 (2010). [CrossRef]
  11. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995). [CrossRef]
  12. L. Vivien, D. Riehl, P. Lancon, F. Hache, and E. Anglaret, “Pulse duration and wavelength effects on the optical limiting behavior of carbon nanotube suspensions,” Opt. Lett. 26, 223–225 (2001). [CrossRef]
  13. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82, 2548–2551 (1999). [CrossRef]
  14. X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. Lim, S. Yang, D. Hagan, and E. Van Stryland, “Investigation of an optical limiting mechanism in multiwalled carbon nanotubes,” Appl. Opt. 39, 1998–2001 (2000). [CrossRef]
  15. L. Vivien, D. Riehl, F. Hache, and E. Anglaret, “Nonlinear scattering origin in carbon nanotube suspensions,” J. Nonlinear Opt. Phys. Mater. 9, 297–307 (2000). [CrossRef]
  16. Z. Jin, L. Huang, S. Goh, G. Xu, and W. Ji, “Size-dependent optical limiting behavior of multi-walled carbon nanotubes,” Chem. Phys. Lett. 352, 328–333 (2002). [CrossRef]
  17. J. Wang and W. Blau, “Nonlinear optical and optical limiting properties of individual single-walled carbon nanotubes,” Appl. Phys. B 91, 521–524 (2008). [CrossRef]
  18. O. Muller, Y. Lutz, J.-P. Moeglin, A. Teissier, and V. Keller, “Optical limiting behavior of carbon nanotubes exposed to infrared laser irradiations studied by the Z-scan technique,” Appl. Opt. 49, 1097–1103 (2010). [CrossRef]
  19. X. Sun, R. Yu, G. Xu, and T. Hore, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3634 (1998). [CrossRef]
  20. N. Izard, P. Billaud, D. Riehl, and E. Anglaret, “Influence of structure on the optical limiting properties of nanotubes,” Opt. Lett. 30, 1509–1511 (2005). [CrossRef]
  21. S. Mishra, H. Rawat, S. Mehendale, K. Rustagi, A. Sood, R. Bandyopadhyay, A. Govindaraj, and C. Rao, “Optical limiting in single-walled carbon nanotube suspensions,” Chem. Phys. Lett. 317, 510–514 (2000). [CrossRef]
  22. G. Mikheev, T. Mogileva, A. Okotrub, D. Bulatov, and V. Vanyukov, “Nonlinear light scattering in a carbon nanotube suspension,” Quantum Electron. 40, 45–50 (2010). [CrossRef]
  23. G. M. Mikheev, V. L. Kuznetsov, D. L. Bulatov, T. N. Mogileva, S. I. Moiseenkov, and A. V. Ishchenko, “Optical limiting and bleaching effects in a suspension of onion-like carbon,” Quantum Electron. 39, 342–346 (2009). [CrossRef]
  24. G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, and S. I. Moiseenkov, “Laser-induced diamagnetism in suspension of onion-like carbon particles,” Tech. Phys. Lett. 37, 831–834 (2011). [CrossRef]
  25. N. Gibson, O. Shenderova, T. Luo, S. Moseenkov, V. Bondar, A. Puzir, K. Purtov, Z. Fitzgerald, and D. Brenner, “Colloidal stability of modified nanodiamond particles,” Diam. Relat. Mater. 18, 620–626 (2009). [CrossRef]
  26. V. S. Bondar and A. P. Puzyr, “Nanodiamonds for biological investigations,” Phys. Solid State 46, 716–719 (2004). [CrossRef]
  27. A. P. Puzyr and V. S. Bondar, “A method of obtaining an explosive synthesis of nanodiamonds with high colloidal stability,” Russian patent2252192 (20May2005).
  28. A. P. Puzyr, V. S. Bondar, A. A. Bukayemsky, G. E. Selyutin, and V. F. Kargin, “Physical and chemical properties of modified nanodiamonds,” Syntheses, Properties and Applications of Ultrananocrystalline Diamond, D. Gruen, ed., Vol. 192 of NATO Science Series (Kluwer Academic, 2005),261–270.
  29. R. Greenwood and K. Kendall, “Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis,” J. Eur. Ceram. Soc. 19, 479–488 (1999). [CrossRef]
  30. G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, “An effectively Q-switched single-frequency YAG:Nd3+ laser with polarization cavity dumping,” Sov. J. Quantum Electron. 22, 37–39 (1992).
  31. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22, 3406–3410 (1983). [CrossRef]
  32. Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express 13, 1833–1838 (2005). [CrossRef]
  33. S. O’Flaherty, S. Hold, M. Cook, T. Torres, Y. Chen, M. Hanack, and W. Blau, “Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics,” Adv. Mater. 15, 19–32 (2003). [CrossRef]
  34. E. Van Stryland and S.-B. Mansoor, “Z-scan measurements of optical nonlinearities,” Characterization Techniques and Tabulations for Organic Nonlinear Materials, M. G. Kuzik, ed. (Marcel Dekker, 1998), pp. 655–692.
  35. Q. Wang, Y. Qin, Y. Zhu, X. Huang, Y. Tian, Z. Guo, and Y. Wang, “Optical limiting performance of multi-walled carbon nanotubols and [C60] fullerols,” Chem. Phys. Lett. 457, 159–162 (2008). [CrossRef]
  36. T. Olivier, F. Billard, and H. Akhouayri, “Nanosecond Z-scan measurements of the nonlinear refractive index of fused silica,” Opt. Express 12, 1377–1382 (2004). [CrossRef]
  37. M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. Van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2, 1776–1790 (2012). [CrossRef]
  38. K.-Y. Niu, H.-M. Zheng, Z.-Q. Li, J. Yang, J. Sun, and X.-W. Du, “Laser dispersion of detonation nanodiamond,” Angew. Chem. 50, 4099–4102 (2011). [CrossRef]
  39. K.-W. Lin, C.-L. Cheng, and H.-C. Chang, “Laser-induced intracluster reactions of oxygen-containing nanodiamonds,” Chem. Mater. 10, 1735–1737 (1998). [CrossRef]
  40. V. V. Vanyukov, T. N. Mogileva, G. M. Mikheev, A. V. Okotrub, and D. L. Bulatov, “Application of nonlinear light scattering in nanocarbon suspensions for adjustment of laser pulse duration,” J. Nanoelectron. Optoelectron. 7, 102–106 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited