OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4242–4248

Modulation depth of static four-phase-divided wind imaging interferometer

Chunmin Zhang, Lin Lu, and Jingjing Ai  »View Author Affiliations


Applied Optics, Vol. 52, Issue 18, pp. 4242-4248 (2013)
http://dx.doi.org/10.1364/AO.52.004242


View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The static four-phase-divided imaging interferometry is a new technology of passive detection for the upper atmospheric wind field. It is featured with real-time detection, no moving parts, stability, and so on. In this paper, its basic theory is discussed, and its characteristics are briefly introduced. Furthermore, its key technical parameter, modulation depth, is analyzed. The relationships of modulation depth with the incident angle and temperature of the working environment are derived by using computer simulation. It is shown that the modulation depth decreases with the increase of the temperature and incident angle. The study provides a theoretical basis to increase the modulation depth of the interferometer, and it is of significance for the development of the upper atmosphere detection technique and theory.

© 2013 Optical Society of America

OCIS Codes
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: March 20, 2013
Manuscript Accepted: April 29, 2013
Published: June 14, 2013

Citation
Chunmin Zhang, Lin Lu, and Jingjing Ai, "Modulation depth of static four-phase-divided wind imaging interferometer," Appl. Opt. 52, 4242-4248 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-18-4242


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D. L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, “WINDII, the wind imaging interferometer on the upper atmosphere research satellite,” J. Geophys. Res. 98, 10725–10750 (1993). [CrossRef]
  2. Y. H. Tang, C. M. Zhang, G. D. Chen, H. L. He, and J. He, “Progress in key technologies of upper atmospheric wind field of satellite remote sensing,” Prog. Phys. 25, 142–152 (2005) (in Chinese).
  3. C. M. Zhang, B. C. Zhao, B. Xiangli, and Y. C. Li, “Interference image spectroscopy for upper atmospheric wind field measurement,” Optik 117, 265–270 (2006). [CrossRef]
  4. C. M. Zhang, B. Xiangli, and B. C. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002). [CrossRef]
  5. C. M. Zhang, B. C. Zhao, and B. Xiangli, “Wide-field-of-view polarization interference imaging spectrometer,” Appl. Opt. 43, 6090–6094 (2004). [CrossRef]
  6. R. L. Hilliard and G. G. Shepherd, “Wind-angle Michelson interferometer for measuring Doppler line widths,” J. Opt. Soc. Am. 56, 362 (1966). [CrossRef]
  7. E. Michael, W. Martin, and F. Andreas, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346–358 (1985).
  8. Z. C. Bu, C. M. Zhang, and B. C. Zhao, “A static and divided mirror Michelson interferometer for measuring atmospheric winds,” Proc. SPIE 7156, 3D-1 (2009). [CrossRef]
  9. C. M. Zhang, Q. M. Wu, and T. K. Mu, “Influences of pyramid prism deflection on inversion of wind velocity and temperature in a novel static polarization wind imaging interferometer,” Appl. Opt. 50, 6134–6139 (2011). [CrossRef]
  10. C. M. Zhang and Y. Li, “Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer,” Appl. Opt. 51, 6508–6517 (2012). [CrossRef]
  11. C. M. Zhang and J. He, “The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile,” Opt. Express 14, 12560 (2006). [CrossRef]
  12. C. M. Zhang and X. H. Jian, “Wide-spectrum reconstruction method for a birefringence interference imaging spectrometer,” Opt. Lett. 35, 366–368 (2010). [CrossRef]
  13. X. H. Jian, J. Du, C. M. Zhang, B. C. Zhao, and B. H. Zhu, “Polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 52, 7565–7570 (2009) (in Chinese).
  14. X. H. Jian, C. M. Zhang, B. C. Zhao, L. Zhang, and L. Y. Zhu, “The optimization theory of detection angle in polarization measurement using polarization interference imaging spectrometer,” Acta Phys. Sin. 58, 2286–2293 (2009) (in Chinese).
  15. H. Y. Wu, C. M. Zhang, and B. C. Zhao, “Calculation and analysis of the optical path difference of modified Wollaston prism,” Acta Phys. Sin. 58, 1642–1647 (2009) (in Chinese).
  16. X. H. Jian, C. M. Zhang, L. Zhang, and B. C. Zhao, “The data processing of the temporarily and spatially mixed modulated polarization interference imaging spectrometer,” Opt. Express 18, 5674–5680 (2010). [CrossRef]
  17. C. M. Zhang, T. K. Mu, W. Y. Ren, L. Zhang, and N. Liu, “Design and analysis of wide-field-of-view polarization imaging spectrometer,” Opt. Eng. 49, 043002 (2010). [CrossRef]
  18. C. M. Zhang, B. Xiangli, and B. C. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A 6, 815–817 (2004). [CrossRef]
  19. C. M. Zhang, B. C. Zhao, and B. Xiangli, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometers,” Opt. Commun. 227, 221–225 (2003). [CrossRef]
  20. W. A. Gault, S. Sargoytchev, and S. Brown, “Divided mirror technique for measuring Doppler shifts with a Michelson interferometer,” Proc. SPIE 4306, 266–272 (2001). [CrossRef]
  21. W. A. Gault, S. Sargoytchev, and G. G. Shepherd, “Divided-mirror scanning technique for a small Michelson interferometer,” Proc. SPIE 2830, 15–18 (1996). [CrossRef]
  22. B. Xiangli, “Primary technology link of Fourier transform spectrometer,” Acta Photon. Sin. 26, 550–554 (1997) (in Chinese).
  23. Z. H. Peng, C. M. Zhang, B. C. Zhao, Y. C. Li, and F. Q. Wu, “The transmittance of Savart polariscope in polarization interference imaging spectrometer,” Acta Phys. Sinica 55, 6374–6381 (2006) (in Chinese).
  24. C. M. Zhang, B. C. Zhao, Y. Yuan, and J. He, “Analysis of the throughput of onboard polarization interference imaging spectrometer,” Proc. SPIE 6032, 0T-1 (2006). [CrossRef]
  25. Y. H. Tang, G. D. Chen, Z. Y. Zhao, and C. M. Zhang, “Flux of modified Sagnac imaging interferometer,” Acta Opt. Sin. 27, 1490–1493 (2007) (in Chinese).
  26. J. He, C. M. Zhang, and Q. G. Zhang, “Research on theory and application of the interferogram of Voigt profile,” Spectrosc. Spectral Anal. 27, 423–426 (2007).
  27. M. Born and E. Wolf, Principles of Optics, pp. 45–63, 429, 246–250 (2006).
  28. H. C. Zhu, C. M. Zhang, and X. H. Jian, “A wide field wind image interferometer with chromatic and thermal compensation,” Acta Phys. Sin. 59, 893–898 (2010).
  29. G. G. Shepherd, W. A. Gault, D. W. Miller, Z. Pasturczyk, S. F. Johnston, P. R. Kosteniuk, J. W. Haslett, D. J. W. Kendall, and J. R. Wimperis, “WAMDII: wide-angle Michelson Doppler imaging interferometer for spacelab,” Appl. Opt. 24, 1571–1584 (1985). [CrossRef]
  30. C. M. Zhang, J. J. Ai, and W. Y. Ren, “Exact calculation of the minimal thickness of the large optical path difference wind imaging interferometer,” Chin. Phys. B 20, 020701 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited