OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4264–4272

Electromagnetically induced grating based on the giant Kerr nonlinearity controlled by spontaneously generated coherence

Nuo Ba, Lei Wang, Xiang-Yao Wu, Xiao-Jing Liu, Hai-Hua Wang, Cui-Li Cui, and Ai-Jun Li  »View Author Affiliations

Applied Optics, Vol. 52, Issue 18, pp. 4264-4272 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1021 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme for realizing electromagnetically induced grating via the giant Kerr nonlinearity in a coherently driven four-level system with spontaneously generated coherence. In the presence of spontaneously generated coherence, Kerr nonlinearity can be enhanced with vanishing linear absorption. Thus, with a standing-wave coupling field, one can achieve a pure absorption grating, which leads the probe field to gather the zero-order direction when the detuning of the coupling field is on resonance. Moreover, we can obtain a pure phase grating, which diffracts a weak probe light into the first-order direction and the second-order direction when the detuning of the coupling field is off resonance.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

Original Manuscript: February 13, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: May 21, 2013
Published: June 17, 2013

Nuo Ba, Lei Wang, Xiang-Yao Wu, Xiao-Jing Liu, Hai-Hua Wang, Cui-Li Cui, and Ai-Jun Li, "Electromagnetically induced grating based on the giant Kerr nonlinearity controlled by spontaneously generated coherence," Appl. Opt. 52, 4264-4272 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  3. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006). [CrossRef]
  4. J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color center in diamond,” Phys. Rev. B 77, 113106 (2008). [CrossRef]
  5. J. W. Gao, J. H. Wu, N. Ba, C. L. Cui, and X. X. Tian, “Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps,” Phys. Rev. A 81, 013804 (2010). [CrossRef]
  6. C. L. Cui, J. H. Wu, J. W. Gao, Y. Zhang, and N. Ba, “Double photonic bandgaps dynamically induced in a tripod system of cold atoms,” Opt. Express 18, 4538–4546 (2010). [CrossRef]
  7. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998). [CrossRef]
  8. B. K. Dutta and P. K. Mahapatra, “Electromagetically induced grating in a three-level ladder-type system driven by a strong standing wave pump and weak probe field,” J. Phys. B 39, 1145–1157 (2006).
  9. Z. H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010). [CrossRef]
  10. L. E. E. de Araujo, “Electromagnetically induced phase grating,” Opt. Lett. 35, 977–979 (2010). [CrossRef]
  11. R. G. Wan, J. Kou, L. Jiang, Y. Jiang, and J. Y. Gao, “Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence,” Phys. Rev. A 83, 033824 (2011). [CrossRef]
  12. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999). [CrossRef]
  13. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999).
  14. S. M. Ma, H. Xu, and B. S. Ham, “Electromagnetically induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime,” Opt. Express 17, 14902–14908 (2009). [CrossRef]
  15. C. Li. Cui, J. K. Jia, Y. Zhang, Y. Xue, H. L. Xu, and J. H. Wu, “Resonant gain suppression and quantum destructive interference in a three-level open V system,” J. Phys. B 44, 215504 (2011). [CrossRef]
  16. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998). [CrossRef]
  17. H. Y. Lo, P. C. Su, and Y. F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Phys. Rev. A 81, 053829 (2010). [CrossRef]
  18. S. W. Du, “Atomic-resonance-enhanced nonlinear optical frequency conversion with entangled photon pairs,” Phys. Rev. A 83, 033807 (2011). [CrossRef]
  19. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef]
  20. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002). [CrossRef]
  21. A. Raczynski, M. Rzepecka, J. Zaremba, and S. Zielinska-Kaniasty, “Polariton picture of light propagation and storing in a tripod system,” Opt. Commun. 260, 73–80 (2006). [CrossRef]
  22. S. Menon and G. S. Argarwal, “Effects of spontaneously generated coherence on the pump-probe response of a Lambda system,” Phys. Rev. A 57, 4014–4018 (1998). [CrossRef]
  23. E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998). [CrossRef]
  24. J. H. Wu and J. Y. Gao, “Phase control of light amplification without inversion in a Lambda system with spontaneously generated coherence,” Phys. Rev. A 65, 063807 (2002). [CrossRef]
  25. S. Y. Zhu, R. C. F. Chan, and C. P. Lee, “Spontaneous emission from a three-level atom,” Phys. Rev. A 52, 710–716 (1995). [CrossRef]
  26. S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996). [CrossRef]
  27. K. T. Kapale, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003). [CrossRef]
  28. V. V. Kozlov, Y. Rostovtsev, and M. O. Scully, “Whispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation,” Phys. Rev. A 74, 063804 (2006). [CrossRef]
  29. W. H. Xu, J. H. Wu, and J. Y. Gao, “Large index of refraction without absorption via decay-induced coherence in a three-level V system,” Eur. Phys. J. D 30, 137–141 (2004). [CrossRef]
  30. Y. P. Niu and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006). [CrossRef]
  31. X. M. Hu and J. S. Peng, “Quantum interference from spontaneous decay in Lambda systems: realization in the dressed-state picture,” J. Phys. B 33, 921–931 (2000). [CrossRef]
  32. J. H. Wu, A. J. Li, Y. Ding, Y. C. Zhao, and J. Y. Gao, “Control of spontaneous emission from a coherently driven four-level atom,” Phys. Rev. A 72, 023802 (2005). [CrossRef]
  33. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited