OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4287–4293

High-sensitivity optical humidity sensor based on a thin dielectric waveguide

R. A. S. Ribeiro, J. F. M. Domenegueti, and S. C. Zilio  »View Author Affiliations

Applied Optics, Vol. 52, Issue 18, pp. 4287-4293 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A low-cost, high-sensitivity humidity sensor based on a low-loss dielectric thin film waveguide (WG) is presented. The guided mode is produced by coupling laser light into the film by optical tunneling through a solid gap deposited on the base of a semi-cylindrical lens. The light reflected from this optical system carries information about the refractive index of the medium neighboring the WG, and is detected by a low-cost CCD linear sensor and analyzed with a microcontroller or personal computer. The technique presents good sensitivity to relative humidity (RH) changes, especially below 10% RH, linear behavior between 20% and 80% RH, and a response time of a few seconds.

© 2013 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(310.2785) Thin films : Guided wave applications

ToC Category:
Thin Films

Original Manuscript: February 22, 2013
Revised Manuscript: April 25, 2013
Manuscript Accepted: May 20, 2013
Published: June 18, 2013

R. A. S. Ribeiro, J. F. M. Domenegueti, and S. C. Zilio, "High-sensitivity optical humidity sensor based on a thin dielectric waveguide," Appl. Opt. 52, 4287-4293 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3, 274–295 (2005). [CrossRef]
  2. C.-Y. Lee, “Humidity sensors: a review,” Sens. Lett. 3, 1–15 (2005). [CrossRef]
  3. H. Y. Wang, Y. Q. Wang, Q. F. Hua, and X. J. Li, “Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array,” Sens. Actuators B 166–167, 451–456 (2012). [CrossRef]
  4. J. J. Steele, M. T. Taschuk, and M. J. Brett, “Response time of nanostructured relative humidity sensors,” Sens. Actuators B 140, 610–615 (2009). [CrossRef]
  5. A. Buvailo, Y. Xing, J. Hines, and E. Borguet, “Thin polymer film based rapid surface acoustic wave humidity sensors,” Sens. Actuators B 156, 444–449 (2011). [CrossRef]
  6. Y. Li, C. Deng, and M. Yang, “A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity,” Sens. Actuators B 165, 7–12 (2012). [CrossRef]
  7. Y. J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S. J. Fonash, and T. J. Huang, “High-speed optical humidity sensors based on chiral sculptured thin films,” Sens. Actuators B 156, 593–598 (2011). [CrossRef]
  8. L. H. Chen, T. Li, C. C. Chana, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012). [CrossRef]
  9. B. C. Yadav, N. Verma, and S. Singh, “Nanocrystalline SnO2-TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor,” Opt. Laser Technol. 44, 1681–1688 (2012). [CrossRef]
  10. A. Alvarez-Herrero, H. Guerrero, E. Bernabeu, and D. Levy, “Analysis of nanostructured porous films by measurement of adsorption isotherms with optical fiber and ellipsometry,” Appl. Opt. 41, 6692–6701 (2002). [CrossRef]
  11. A. Alvarez-Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE Sens. 4, 52–56 (2004). [CrossRef]
  12. A. Gaston, I. Lozano, F. Perez, F. Auza, and J. Sevilla, “Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors),” IEEE Sens. 3, 806–811 (2003). [CrossRef]
  13. L. Xu, J. C. Fanguy, K. Soni, and S. Tao, “Optical fiber humidity sensor based on evanescent-wave scattering,” Opt. Lett. 29, 1191–1193 (2004). [CrossRef]
  14. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222 (2005). [CrossRef]
  15. M. N. Weiss, R. Srivastava, and H. Groger, “Experimental investigation of a surface plasmon-based integrated-optic humidity sensor,” Electron. Lett. 32, 842–843 (1996). [CrossRef]
  16. F. R. Flory, ed., Thin Films for Optical System (CRC Press, 1995).
  17. R. Kaiser, Y. Lévy, N. Vansteenkiste, A. Aspect, W. Seifert, D. Leipold, and J. Mlynek, “Resonant enhancement of evanescent waves with a thin dielectric waveguide,” Opt. Commun. 104, 234–240 (1994). [CrossRef]
  18. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970). [CrossRef]
  19. R. Ulrich, “Theory of prism-film coupler by plane wave analysis,” J. Opt. Soc. Am. 60, 1337–1350 (1970). [CrossRef]
  20. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2412 (1971). [CrossRef]
  21. Y. Levy, “Étude du champ inhomogène obtenu par la réflexion totale d’une onde plane sur un système de couches minces,” Nouv. Rev. d’Optique Appliquée 3, 25–30 (1972).
  22. J. Cardin and D. Leduc, “Determination of refractive index, thickness and the optical losses of thin films from prism-film coupling measurements,” Appl. Opt. 47, 894–900 (2008). [CrossRef]
  23. S. C. Zilio, “A simple method to measure critical angles for high-sensitivity differential refractometry,” Opt. Express 20, 1862–1867 (2012). [CrossRef]
  24. S. Monneret, P. Huguet-Chantôme, and F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides,” J. Opt. A 2, 188–195 (2000). [CrossRef]
  25. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin films,” Appl. Opt. 22, 178–184 (1983). [CrossRef]
  26. D. B. Asay and S. H. Kim, “Evolution of the adsorbed water layer structure on silicon oxide at room temperature,” J. Phys. Chem. B 109, 16760–16763 (2005). [CrossRef]
  27. “Manufacturing Engineering Laboratory—Engineering Metrology Toolbox,” National Institute of Standard Technology, 28Dec.2011, http://emtoolbox.nist.gov/Main/Main.asp .
  28. W. Ecke, A. A. Chertoriiski, and V. L. Vesnin, “A high-speed system for strain and temperature measurements based on fiber Bragg sensors,” Instrum. Exp. Tech. 50, 565 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited