OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4311–4322

Lens design with reduced sensitivity to thermally induced stress birefringence

Andrew F. Kurtz and Joseph R. Bietry  »View Author Affiliations


Applied Optics, Vol. 52, Issue 18, pp. 4311-4322 (2013)
http://dx.doi.org/10.1364/AO.52.004311


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In optical systems required to maintain the polarization states of the transiting light, mechanically induced stress birefringence can degrade performance, at least locally altering polarization phase and ultimately reducing polarization contrast. Although thermally induced stress birefringence can cause similar problems in imaging systems bearing high optical flux, appropriate design approaches to resolve this problem have been lacking. This paper first develops criteria to select optical glasses with reduced sensitivity to thermally induced stress birefringence. The design of projection lenses using the resulting thermal stress desensitized reduced glass list is then discussed, as is the application of such lenses in laser projection systems.

© 2013 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(140.0140) Lasers and laser optics : Lasers and laser optics
(220.3620) Optical design and fabrication : Lens system design
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: April 9, 2013
Manuscript Accepted: May 6, 2013
Published: June 18, 2013

Citation
Andrew F. Kurtz and Joseph R. Bietry, "Lens design with reduced sensitivity to thermally induced stress birefringence," Appl. Opt. 52, 4311-4322 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-18-4311


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Shchegrov, J. P. Watson, D. Lee, A. Umbrasas, S. Hallstein, G. P. Carey, W. R. Hitchens, K. Scholz, B. D. Cantos, G. Niven, M. Jansen, J.-M. Pelaprat, and A. Mooradian, “Development of compact blue-green lasers for projection display based on novalux extended-cavity surface-emitting laser technology,” Proc. SPIE 5737, 113–119 (2005). [CrossRef]
  2. G. Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan, Y. Bi, Y. Wang, S. W. Chu, T. J. Wu, J. K. Xu, H. T. Min, S. P. Yan, C. W. Ye, and Z. D. Jia, “Laser digital cinema projector,” J. Disp. Technol. 4, 314–318 (2008). [CrossRef]
  3. B. Silverstein, A. Kurtz, J. Bietry, and G. Nothhard, “A laser-based digital cinema projector,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 42, 326–329 (2011). [CrossRef]
  4. L. J. Hornbeck, D. Darrow, H. Pettitt, B. Walker, and B. Werner, “DLP Cinema projectors—enabling digital cinema,” Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 31, 314–317 (2000).
  5. A. Kurtz, B. Silverstein, J. Cobb, G. Nothhard, X. D. Mi, J. Stoops, F. Ehrne, and D. Nelson, “An LCOS-based digital-cinema projector,” J. Soc. Inf. Disp. 14, 311–323 (2006). [CrossRef]
  6. L. Lipton, “Digital stereoscopic cinema: the 21st century,” SPIE Proc. 6803, 68030W (2008). [CrossRef]
  7. A. Woods and C. Harris, “Using crosstalk simulation to predict the performance of anaglyph 3-D glasses,” J. Soc. Inf. Disp. 20, 304–315 (2012). [CrossRef]
  8. L. Sun and S. Edlou, “Low birefringence lens design for polarization sensitive optical systems,” SPIE Proc. 6289, 62890H1 (2006). [CrossRef]
  9. K. Doyle, J. Hoffman, V. Genberg, and G. Michels, “Stress birefringence modeling for lens design and photonics,” Proc. SPIE 4832, 436–447 (2002). [CrossRef]
  10. D. Allan, J. Webb, and J. Bruning, “Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures,” U.S. patent6,785,051 (31Aug.2004).
  11. M. Brunotte, J. Hartmaier, H. Holderer, W. Kaiser, A. Kohl, J. Kugler, M. Maul, and C. Wagner, “Projection lens and microlithographic projection exposure apparatus,” U.S. patent6,879,379 (12Apr.2005).
  12. J. Schmidt, N. Nestorovic, R. Sterling, J. Haggerty, J. Ruiz, R. Edwards, and R. Hollister, “Liquid crystal light valve with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve,” U.S. patent5,576,854 (19Nov.1996).
  13. R. Cline, M. Duelli, and M. Greenberg, “Thermal stress birefringence in LCOS projection displays,” Displays 23, 151–159 (2002). [CrossRef]
  14. D. Aastuen, C. Bruzzone, and J. Ma, patent, “Stress birefringence compensation in polarizing beamsplitters and systems using same,” U.S. patent7,357,511 (29Sept.2008).
  15. A. Kurtz, J. Bietry, and B. Silverstein, “Low thermal stress birefringence imaging system,” U.S. patent8,287,129 (24Nov.2012).
  16. Schott Glass Technical Notes, “TIE 27: Stress in Optical Glass, “TIE 32: Thermal Loads on Optical Glass,” http://www.us.schott.com/advanced_optics/english/community/technical-papers-and-tools/tie.html .
  17. A. Ahmad, ed., Handbook of Optomechanical Engineering (CRC Press, 1997).
  18. Schott Glass catalog, http://ebookbrowse.com/schott-optical-glass-pocket-catalog-europe-october-2011-en-pdf-d196213557 .
  19. Ohara Glass information, http://www.oharacorp.com/catalog.html .
  20. K. D. Sharma and M. Kumar, “New lens for 35 mm cinematograph projector,” Appl. Opt. 25, 4609–4613 (1986). [CrossRef]
  21. G. Berggren, “The evolution of the cinema lens—part 1,” SMPTE Motion Imag. J. 113, 430–441 (2004). [CrossRef]
  22. G. Berggren, “The evolution of the cinema lens—part 2,” SMPTE Motion Imag. J. 116, 87–103 (2007). [CrossRef]
  23. B. Silverstein, A. Kurtz, and J. Kruschwitz, “Phase-compensated thin-film beam combiner,” U.S. patent8,305,502 (20May2012).
  24. A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent3,748,015 (24July1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited