OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 18 — Jun. 20, 2013
  • pp: 4377–4384

Athermal directions in KGd(WO4)2 and KLu(WO4)2 crystals under uniform heating

V. V. Filippov  »View Author Affiliations


Applied Optics, Vol. 52, Issue 18, pp. 4377-4384 (2013)
http://dx.doi.org/10.1364/AO.52.004377


View Full Text Article

Enhanced HTML    Acrobat PDF (481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Athermal (AT) propagation directions in KGd(WO4)2 and KLu(WO4)2 crystals are found for two configurations (monolithic and laser cavity) at two wavelengths of 633 and 1064 nm. Four branches of solutions for AT directions exist for both configurations in KGd(WO4)2 and for the laser cavity configuration in KLu(WO4)2; for the monolithic configuration there are one or two branches for wavelengths of 633 and 1064 nm, respectively. Two of the branches for the laser cavity configuration pass in the vicinity of the crystal optical axis, where solutions are extremely sensitive to the direction of propagation. In some cases discrepancy in thermo-optic and thermal expansion parameters found by different authors may lead to the appearance (or disappearance) of AT directions.

© 2013 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3380) Lasers and laser optics : Laser materials
(140.6810) Lasers and laser optics : Thermal effects
(160.4760) Materials : Optical properties

ToC Category:
Materials

History
Original Manuscript: January 29, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: May 17, 2013
Published: June 19, 2013

Citation
V. V. Filippov, "Athermal directions in KGd(WO4)2 and KLu(WO4)2 crystals under uniform heating," Appl. Opt. 52, 4377-4384 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-18-4377


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Krupke, “Ytterbium solid-state lasers—the first decade,” IEEE J. Sel. Top. Quantum Electron. 6, 1287–1296 (2000). [CrossRef]
  2. F. Bruner, G. I. Spushler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller, “Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1 W average power,” Opt. Lett. 251119–1121 (2000). [CrossRef]
  3. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double tungstate lasers: from bulk toward on-chip integrated waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 13, 661–671 (2007). [CrossRef]
  4. V. Petrov, M. C. Pujol, X. Mateos, O. Silvestre, S. Rivier, M. Aguilo, R. M. Sole, J. Liu, U. Griebner, and F. Diaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon. Rev. 1, 179–212 (2007). [CrossRef]
  5. S. Pekarek, C. Fiebig, M. C. Stumpf, A. E. H. Oehler, K. Paschke, G. Erbert, T. Sudmeyer, and U. Keller, “Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW,” Opt. Express 18, 16320–16326 (2010). [CrossRef]
  6. M. S. Gaponenko, V. E. Kisel, N. V. Kuleshov, A. M. Malyarevich, K. V. Yumashev, and A. A. Onushchenko, “Passive mode locking of diode-pumped Tm:KYW laser with PbS quantum-dot-doped glass,” Laser Phys. Lett. 7, 286–289 (2010). [CrossRef]
  7. D. Geskus, S. Aravazhi, K. Wörhoff, and M. Pollnau, “High-power, broadly tunable, and low-quantum-defect KG1−xLux(WO4)2:Yb3+ channel waveguide lasers,” Opt. Express 18, 26107–26112 (2010). [CrossRef]
  8. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett. 30, 1701–1703 (2005). [CrossRef]
  9. J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett. 302427–2429 (2005). [CrossRef]
  10. T. T. Basiev, “New crystals for Raman lasers,” Phys. Solid State 47, 1400–1405 (2005). [CrossRef]
  11. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, V. Savitski, S. Calvez, D. Burns, and A. A. Pavlyuk, “Thermal lens study in diode pumped Ng- and Np-cut Nd:KGd(WO4)2 laser crystals,” Opt. Express17, 23536–235432009.
  12. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO)2:Nd3+-(KGW:Nd)),” Opt. Eng. 36, 1660–1669 (1997). [CrossRef]
  13. S. P. Biswal, S. O’Connor, and S. R. Bowman, “Thermo-optical parameters measured in potassium-gadolinium-tungstate,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThT62.
  14. J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V. Petrov, and U. Griebner, “Efficient Yb:KGW lasers end-pumped by high-power diode bars,” Appl. Phys. B 83, 235–239 (2006). [CrossRef]
  15. D. Stučinskas, R. Antipenkov, and A. Varanavičius, “Thermal lensing in high-power diode-pumped Yb:KGW laser,” Lith. J. Phys. 50, 191–199 (2010). [CrossRef]
  16. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in Nd-doped Nd:KGd(WO)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010). [CrossRef]
  17. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing study and athermal directions in flashlamp-pumped KGd(WO4)2,” Appl. Phys. B 106, 881–886 (2012). [CrossRef]
  18. S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009). [CrossRef]
  19. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Detailed characterization of thermal expansion tensor in monoclinic KRe ((WO4)2 where Re=Gd, Y, Lu, Yb.” Opt. Mater. 34, 23–26 (2011). [CrossRef]
  20. Y. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystallophysics (Nauka, 1979) [In Russian].
  21. F. I. Fedorov, Optics of Anisotropic Media (Academy of Sciences BSSR, 1976) [in Russian].
  22. F. I. Fedorov and V. V. Filippov, Reffection and Refraction of Light by Transparent Crystals (Nauka i tekhnika, 1976) [in Russian].
  23. M. C. Pujol, R. Sole, J. Massons, J. Gavalda, X. Solans, C. Zaldo, F. Diaz, and M. Aguilo, “Structural study of monoclinic KGd(WO)2 and effects of lanthanide substitution,” J. Appl. Crystallogr. 34, 1–6 (2001). [CrossRef]
  24. Ò. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, and V. Petrov, “Thermal properties of monoclinic KLu(WO)2 as a promising solid state laser host,” Opt. Express 16, 5022–5034 (2008). [CrossRef]
  25. J. F. Nye, Physical Properties of Crystals (Clarendon, 1957).
  26. S. P. Biswal, S. O’Connor, and S. R. Bowman, “Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate” Appl. Opt. 44, 3093–3097 (2005). [CrossRef]
  27. M. Zhou, X. Wang, and J. Tan, “Calculation and analysis of athermal directions of Yb:KGW laser crystal,” J. Appl. Opt. 29, 81–85 (2008).
  28. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  29. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb.” Opt. Mater. 33, 1688–1694 (2011). [CrossRef]
  30. P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO)2 and KY(WO)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited