OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4426–4432

High temperature measurements of martensitic transformations using digital holography

Benjamin P. Thiesing, Christopher J. Mann, and Sebastien Dryepondt  »View Author Affiliations


Applied Optics, Vol. 52, Issue 19, pp. 4426-4432 (2013)
http://dx.doi.org/10.1364/AO.52.004426


View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

During thermal cycling of nickel-aluminum-platinum (NiAlPt) and single crystal iron-chromium-nickel (FeCrNi) alloys, the structural changes associated with the martensite to austenite phase transformation were measured using dual-wavelength digital holography. Real-time in situ measurements reveal the formation of striations within the NiAlPt alloy at 70°C and the FeCrNi alloy at 520°C. The results demonstrate that digital holography is an effective technique for acquiring noncontact, high precision information of the surface evolution of alloys at high temperatures.

© 2013 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(180.6900) Microscopy : Three-dimensional microscopy
(240.0240) Optics at surfaces : Optics at surfaces
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: April 3, 2013
Revised Manuscript: May 20, 2013
Manuscript Accepted: May 21, 2013
Published: June 21, 2013

Citation
Benjamin P. Thiesing, Christopher J. Mann, and Sebastien Dryepondt, "High temperature measurements of martensitic transformations using digital holography," Appl. Opt. 52, 4426-4432 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-19-4426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. R. Boccaccini and B. Hamann, “Review in situ high-temperature optical microscopy,” J. Mater. Sci. 34, 5419–5436 (1999). [CrossRef]
  2. D. Coillot, R. Podor, F. O. Méar, and L. Montagne, “Characterization of self-healing glassy composites by high-temperature environmental scanning electron microscopy (HT-ESEM),” J. Electron Microsc. 59, 359–366 (2010). [CrossRef]
  3. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005). [CrossRef]
  4. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008). [CrossRef]
  5. J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurements using digital-image correlation,” Exp. Mech. 36, 64–70 (1996). [CrossRef]
  6. B. Pan, D. Wu, Z. Wang, and Y. Xia, “High-temperature digital image correlation method for full-field deformation measurement at 1200°C,” Meas. Sci. Technol. 22, 1–11 (2011). [CrossRef]
  7. E. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962). [CrossRef]
  8. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  9. D. L. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006). [CrossRef]
  10. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007). [CrossRef]
  11. P. Ferraro, L. Miccio, S. Grilli, M. Paturzo, S. De Nicola, A. Finizio, R. Osellame, and P. Laporta, “Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography,” Opt. Express 15, 14591–14600 (2007). [CrossRef]
  12. J. Li, “FFT computation of angular spectrum diffraction formula and its application in wavefront reconsruction of digital holography,” Acta Opt. Sin. 29, 1163–1167 (2009). [CrossRef]
  13. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16, 9753–9764 (2008). [CrossRef]
  14. J. L. Smialek and R. F. Heheman, “Transformation temperatures of martensite in β-phase nickel aluminide,” Metall. Trans. 4, 1571–1575 (1973).
  15. D. J. Sordelet, M. F. Besser, R. T. Ott, B.J. Zimmerman, W. D. Porter, and B. Gleeson, “Isothermal nature of martensite formation in Pt-modified β-NiAl alloys.,” Acta Mater. 55, 2433–2441 (2007). [CrossRef]
  16. A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire, and V. Keppens, “Single-crystal elastic constants of Fe-15Ni-15Cr alloy,” Metall. Mater. Trans. A 35, 3149–3154 (2004). [CrossRef]
  17. C. M. Wayman, Introduction to the Crystallography of Martensitic Transformation (Macmillan, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3100 KB)     
» Media 2: MOV (3242 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited