OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4505–4509

Large-effective-area dispersion-compensating fiber design based on dual-core microstructure

Gautam Prabhakar, Akshit Peer, Vipul Rastogi, and Ajeet Kumar  »View Author Affiliations

Applied Optics, Vol. 52, Issue 19, pp. 4505-4509 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a microstructure-based dual-core dispersion-compensating fiber (DCF) design for dispersion compensation in long-haul optical communication links. The design has been conceptualized by combining the all-solid dual-core DCF and dispersion-compensating photonic crystal fiber. The fiber design has been analyzed numerically by using a full vectorial finite difference time domain method. We propose a fiber design for narrowband as well as broadband dispersion compensation. In the narrowband DCF design, the fiber exhibits very large negative dispersion of around 42,000psnm1km1 and a large mode area of 67μm2. The effects of varying different structural parameters on the dispersion characteristics as well as on the trade-off between full width at half-maximum and dispersion have been investigated. For broadband DCF design, a dispersion value between 860psnm1km1 and 200psnm1km1 is obtained for the entire spectral range of the C band.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 11, 2013
Revised Manuscript: May 22, 2013
Manuscript Accepted: May 30, 2013
Published: June 24, 2013

Gautam Prabhakar, Akshit Peer, Vipul Rastogi, and Ajeet Kumar, "Large-effective-area dispersion-compensating fiber design based on dual-core microstructure," Appl. Opt. 52, 4505-4509 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996). [CrossRef]
  2. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000). [CrossRef]
  3. J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002). [CrossRef]
  4. K. Pande and B. P. Pal, “Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers,” Appl. Opt. 42, 3785–3791 (2003). [CrossRef]
  5. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. Jorgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566–3579 (2005). [CrossRef]
  6. F. Gérôme, J. Auguste, J. Maury, J. Blondy, and J. Marcou, “Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber,” J. Lightwave Technol. 24, 442–448 (2006). [CrossRef]
  7. V. Rastogi, R. Kumar, and A. Kumar, “Large effective area all-solid dispersion compensating fiber,” J. Opt. 13, 125707 (2011). [CrossRef]
  8. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999). [CrossRef]
  9. L. P. Shen, W.-P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–1651 (2003). [CrossRef]
  10. R. K. Sinha and S. K. Varshney, “Dispersion properties of photonic crystal fibers,” Microw. Opt. Technol. Lett. 37, 129–132 (2003). [CrossRef]
  11. Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004). [CrossRef]
  12. A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13, 627–635 (2005). [CrossRef]
  13. S. Yang, Y. Zhang, L. He, and S. Xie, “Broadband dispersion-compensating photonic crystal fiber,” Opt. Lett. 31, 2830–2832 (2006). [CrossRef]
  14. X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47, 5190–5196 (2008). [CrossRef]
  15. B. Dabas and R. K. Sinha, “Dispersion characteristics of hexagonal and square lattice chalcogenide As2Se2 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010). [CrossRef]
  16. G. Ouyang, Y. Xu, and A. Yariv, “Theoretical study on dispersion compensation in air-core Bragg fibers,” Opt. Express 10, 899–908 (2002). [CrossRef]
  17. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by model interactions in OmniGuide fibers,” Opt. Express 11, 1175–1196 (2003). [CrossRef]
  18. F. Gérôme, S. Février, A. Pryamikov, J. Auguste, R. Jamier, J. Blondy, M. Likhachev, M. Bubnov, S. Semjonov, and E. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett. 32, 1208–1210 (2007). [CrossRef]
  19. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994). [CrossRef]
  20. A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000). [CrossRef]
  21. S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001). [CrossRef]
  22. S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002). [CrossRef]
  23. G. Lin, X. Dong, and S. Juan, “Design and analysis of the high-order mode dispersion compensating fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 798618.
  24. A. Peer, G. Prabhakar, V. Rastogi, and A. Kumar, “A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper WPo.24.
  25. J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000). [CrossRef]
  26. V. Rastogi and K. S. Chiang, “Holey optical fiber with circularly distributed holes analyzed by the radial effective-index method,” Opt. Lett. 28, 2449–2451 (2003). [CrossRef]
  27. J.-S. Chiang and T.-L. Wu, “Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF),” Opt. Commun. 258, 170–176 (2006). [CrossRef]
  28. T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.
  29. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited