OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4510–4514

Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process

R. Bruck, P. Muellner, N. Kataeva, A. Koeck, S. Trassl, V. Rinnerbauer, K. Schmidegg, and R. Hainberger  »View Author Affiliations

Applied Optics, Vol. 52, Issue 19, pp. 4510-4514 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fabrication of flexible low-loss, thin-film, foil-based polymer waveguides with grating couplers employing a high-volume industrial roll-to-roll process is demonstrated. The embossed waveguides feature propagation losses of less than 1dB/cm (633 nm, TE polarization), bending losses of 0.40.8dB/360° for bending radii as small as 2 mm, and grating coupling efficiencies of up to 25%. In addition, the waveguides possess a thermo-optic coefficient of 1.58×1041/°C. The fabricated waveguides are promising candidates for short-distance data communication as well as for sensing applications.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: February 25, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: May 28, 2013
Published: June 25, 2013

R. Bruck, P. Muellner, N. Kataeva, A. Koeck, S. Trassl, V. Rinnerbauer, K. Schmidegg, and R. Hainberger, "Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process," Appl. Opt. 52, 4510-4514 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Waldhäusl, B. Schnabel, P. Danneberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997). [CrossRef]
  2. C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003). [CrossRef]
  3. J. T. Kim, C. G. Choi, and H. K. Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI J. 27, 122–125 (2005). [CrossRef]
  4. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004). [CrossRef]
  5. J. J. Yang, A. S. Flores, and M. R. Wang, “Array waveguide evanescent ribbon coupler for card-to-backplane optical interconnects,” Opt. Lett. 32, 14–16 (2007). [CrossRef]
  6. E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010). [CrossRef]
  7. S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electron. Lett. 42, 634–635 (2006). [CrossRef]
  8. J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007). [CrossRef]
  9. N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870–16879 (2007). [CrossRef]
  10. J. J. Dumond and H. Y. Low, “Recent developments and design challenges in continuous roller micro and nanoimprinting,” J. Vac. Sci. Technol. B 30, 010801 (2012). [CrossRef]
  11. H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010). [CrossRef]
  12. M.-W. Wang and C.-C. Tseng, “Analysis and fabrication of a prism film with roll-to-roll fabrication process,” Opt. Express 17, 4718–4725 (2009). [CrossRef]
  13. M. B. Chan-Park and W. K. Neo, “Ultraviolet embossing for patterning high aspect ratio polymeric microstructures,” Microsys. Technol. 9, 501–506 (2003). [CrossRef]
  14. S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388–2391 (2007). [CrossRef]
  15. R. Bruck and R. Hainberger, “Efficient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index coating,” Appl. Opt. 49, 1972–1978 (2010). [CrossRef]
  16. R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009). [CrossRef]
  17. L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012). [CrossRef]
  18. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008). [CrossRef]
  19. S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3, 2304–2310 (2009). [CrossRef]
  20. M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited