OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4566–4575

Generation of nondiffracting Bessel beam using digital micromirror device

Lei Gong, Yu-Xuan Ren, Guo-Sheng Xue, Qian-Chang Wang, Jin-Hua Zhou, Min-Cheng Zhong, Zi-Qiang Wang, and Yin-Mei Li  »View Author Affiliations

Applied Optics, Vol. 52, Issue 19, pp. 4566-4575 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.

© 2013 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(140.3300) Lasers and laser optics : Laser beam shaping
(230.6120) Optical devices : Spatial light modulators
(140.3295) Lasers and laser optics : Laser beam characterization
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 3, 2013
Revised Manuscript: May 27, 2013
Manuscript Accepted: May 28, 2013
Published: June 26, 2013

Lei Gong, Yu-Xuan Ren, Guo-Sheng Xue, Qian-Chang Wang, Jin-Hua Zhou, Min-Cheng Zhong, Zi-Qiang Wang, and Yin-Mei Li, "Generation of nondiffracting Bessel beam using digital micromirror device," Appl. Opt. 52, 4566-4575 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, J. Miceli, and J. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  2. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011). [CrossRef]
  3. L. Gao, L. Shao, C. D. Higgins, J. S. Poulton, M. Peifer, M. W. Davidson, X. Wu, B. Goldstein, and E. Betzig, “Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens,” Cell 151, 1370–1385 (2012). [CrossRef]
  4. S. B. Purnapatra, S. Bera, and P. P. Mondal, “Spatial filter based Bessel-like beam for improved penetration depth imaging in fluorescence microscopy,” Sci. Rep. 2, 692 (2012). [CrossRef]
  5. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001). [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  7. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002). [CrossRef]
  8. V. Garcés-Chávez, D. Roskey, M. Summers, H. Melville, D. McGloin, E. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004). [CrossRef]
  9. D. B. Ruffner and D. G. Grier, “Optical conveyors: a class of active tractor beams,” Phys. Rev. Lett. 109, 163903 (2012). [CrossRef]
  10. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657–659 (2003). [CrossRef]
  11. J. Arlt, K. Dholakia, L. Allen, and M. Padgett, “Efficiency of second-harmonic generation with Bessel beams,” Phys. Rev. A 60, 2438–2441 (1999). [CrossRef]
  12. P. Polesana, A. Dubietis, M. Porras, E. Kučinskas, D. Faccio, A. Couairon, and P. Di Trapani, “Near-field dynamics of ultrashort pulsed Bessel beams in media with Kerr nonlinearity,” Phys. Rev. E 73, 056612 (2006). [CrossRef]
  13. P. Polynkin, M. Kolesik, A. Roberts, D. Faccio, P. di Trapani, and J. Moloney, “Generation of extended plasma channels in air using femtosecond Bessel beams,” Opt. Express 16, 15733–15740 (2008). [CrossRef]
  14. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, “Tonks–Girardeau gas of ultracold atoms in an optical lattice,” Nature 429, 277–281 (2004). [CrossRef]
  15. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008). [CrossRef]
  16. X. F. Li, R. Winfield, S. O’Brien, and G. Crean, “Application of Bessel beams to 2D microfabrication,” Appl. Surf. Sci. 255, 5146–5149 (2009). [CrossRef]
  17. V. Kollarova, T. Medrik, R. Celechovsky, Z. Bouchal, O. Wilfert, and Z. Kolka, “Application of nondiffracting beams to wireless optical communications,” Proc. SPIE 6736, 67361C (2007). [CrossRef]
  18. H. A. Rendall, R. F. Marchington, B. B. Praveen, G. Bergmann, Y. Arita, A. Heisterkamp, F. J. Gunn-Moore, and K. Dholakia, “High-throughput optical injection of mammalian cells using a Bessel light beam,” Lab Chip 12, 4816–4820 (2012). [CrossRef]
  19. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photon. Rev. 6, 607–621 (2012). [CrossRef]
  20. M. J. Comstock, T. Ha, and Y. R. Chemla, “Ultrahigh-resolution optical trap with single-fluorophore sensitivity,” Nature Methods 8, 335–340 (2011). [CrossRef]
  21. G. Sirinakis, Y. Ren, Y. Gao, Z. Xi, and Y. Zhang, “Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy,” Rev. Sci. Instrum. 83, 093708 (2012). [CrossRef]
  22. S. Akturk, C. L. Arnold, B. Prade, and A. Mysyrowicz, “Generation of high quality tunable Bessel beams using a liquid-immersion axicon,” Opt. Commun. 282, 3206–3209 (2009). [CrossRef]
  23. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Optics Express 17, 15558–15570 (2009). [CrossRef]
  24. M. A. Mahmoud, M. Y. Shalaby, and D. Khalil, “Propagation of Bessel beams generated using finite-width Durnin ring,” Appl. Opt. 52, 256–263 (2013). [CrossRef]
  25. G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992). [CrossRef]
  26. G. Milne, G. D. M. Jeffries, and D. T. Chiu, “Tunable generation of Bessel beams with a fluidic axicon,” Appl. Phys. Lett. 92, 261101 (2008). [CrossRef]
  27. T. Tsai, E. McLeod, and C. B. Arnold, “Generating Bessel beams with a tunable acoustic gradient index of refraction lens,” Proc. SPIE 6326, 63261F (2006). [CrossRef]
  28. J. M. D. Kowalczyk, S. N. Smith, and E. B. Szarmes, “Generation of Bessel beams using a 4-f spatial filtering system,” Am. J. Phys. 77, 229–236 (2009). [CrossRef]
  29. J. H. Lee, S. J. Lee, C. S. Kyong, J. B. Song, Y. W. Lee, and C. H. Kwak, “Propagation characteristics of Bessel beam using phase type CGH,” Proc. SPIE 4924, 302–310 (2002).
  30. D. Brousseau, J. Drapeau, M. Piché, and E. F. Borra, “Generation of Bessel beams using a magnetic liquid deformable mirror,” Appl. Opt. 50, 4005–4010 (2011). [CrossRef]
  31. S. K. Tiwari, S. R. Mishra, S. P. Ram, and H. S. Rawat, “Generation of a Bessel beam of variable spot size,” Appl. Opt. 51, 3718–3725 (2012). [CrossRef]
  32. R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrkiewicz, P. di Trapani, and M. Padgett, “Efficient generation of Bessel beam arrays by means of an SLM,” Eur. Phys. J. Special Topics 199, 159–166 (2011). [CrossRef]
  33. F. Courvoisier, P. A. Lacourt, M. Jacquot, M. Bhuyan, L. Furfaro, and J. Dudley, “Surface nanoprocessing with nondiffracting femtosecond Bessel beams,” Opt. Lett. 34, 3163–3165 (2009). [CrossRef]
  34. A. V. Novitsky and D. V. Novitsky, “Negative propagation of vector Bessel beams,” J. Opt. Soc. Am. A 24, 2844–2849 (2007). [CrossRef]
  35. F. Courvoisier, M. Jacquot, P. A. Lacourt, M. Bhuyan, L. Furfaro, R. Ferrière, and J. Dudley, “Generation of ultrafast Bessel micro-beams and applications to laser surface nanoprocessing,” Proc. SPIE 7728, 77281W (2010).
  36. J. Liang, S. Y. Wu, R. N. Kohn, M. F. Becker, and D. J. Heinzen, “Bandwidth-limited laser image projection using a DMD-based beam shaper,” Proc. SPIE 8254, 82540M (2012). [CrossRef]
  37. J. M. Younse, “Projection display systems based on the digital micromirror device (DMD),” in Micromachining and Microfabrication (International Society for Optics and Photonics, 1995), pp. 64–75.
  38. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14 (2003). [CrossRef]
  39. P. Zhu, O. Fajardo, J. Shum, Y. P. Z. Schärer, and R. W. Friedrich, “High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device,” Nat. Protoc. 7, 1410–1425 (2012). [CrossRef]
  40. Y. X. Ren, M. Li, K. Huang, J. G. Wu, H. F. Gao, Z. Q. Wang, and Y. M. Li, “Experimental generation of Laguerre–Gaussian beam using digital micromirror device,” Appl. Opt. 49, 1838–1844 (2010). [CrossRef]
  41. V. Lerner, D. Shwa, Y. Drori, and N. Katz, “Shaping Laguerre–Gaussian laser modes with binary gratings using a digital micromirror device,” Opt. Lett. 37, 4826–4828 (2012). [CrossRef]
  42. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  43. P. L. Overfelt and C. S. Kenney, “Comparison of the propagation characteristics of Bessel, Bessel–Gauss, and Gaussian beams diffracted by a circular aperture,” J. Opt. Soc. Am. A 8, 732–745 (1991). [CrossRef]
  44. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Cont. Phys. 46, 15–28 (2005). [CrossRef]
  45. A. Stockham and J. G. Smith, “Optical design for generating Bessel beams for micromanipulation,” Proc. SPIE 63211, 63261D (2006). [CrossRef]
  46. P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti, X. Zhang, and Z. Chen, “Generation of linear and nonlinear nonparaxial accelerating beams,” Opt. Lett. 37, 2820–2822 (2012). [CrossRef]
  47. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012). [CrossRef]
  48. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012). [CrossRef]
  49. J. P. Rice, J. E. Neira, M. Kehoe, and R. Swanson, “DMD diffraction measurements to support design of projectors for test and evaluation of multispectral and hyperspectral imaging sensors,” Proc. SPIE 7210, 72100D (2009).
  50. X. Chen, B. Yan, F. Song, Y. Wang, F. Xiao, and K. Alameh, “Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers,” Appl. Opt. 51, 7214–7220 (2012). [CrossRef]
  51. H. Ryoo, D. W. Kang, and J. W. Hahn, “Analysis of the effective reflectance of digital micromirror devices and process parameters for maskless photolithography,” Microelectron. Eng. 88, 235–239 (2011). [CrossRef]
  52. J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories,” Opt. Lett. 38, 498–500 (2013). [CrossRef]
  53. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited