OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4601–4607

1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating

W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng  »View Author Affiliations

Applied Optics, Vol. 52, Issue 19, pp. 4601-4607 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (790 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 1.94 μm switchable dual-wavelength Tm3+ fiber laser employing two high-birefringence fiber Bragg gratings (HB-FBGs) is demonstrated. The polarization hole burning effect enhanced by the HB-FBG is first observed and adopted to guarantee stable dual-wavelength operation in the spectral region near 2 μm at room temperature. The wavelength spacing between the dual lasing wavelengths is 0.81 nm. The polarization states of the dual-output lasers are orthogonal. By adjusting a polarization controller, a single-wavelength mode operating at one of the dual wavelengths can be selected. The side-mode-suppression ratio of each laser can be greater than 60 dB. The power fluctuation measurement at both operating wavelengths shows that this Tm3+ fiber laser has good stability.

© 2013 Optical Society of America

OCIS Codes
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 18, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: May 23, 2013
Published: June 26, 2013

W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, "1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating," Appl. Opt. 52, 4601-4607 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, “All-fiber tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51, 7011–7015 (2012). [CrossRef]
  2. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 um,” IEEE J. Sel. Top. Quantum Electron. 13, 567–572 (2007). [CrossRef]
  3. N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009). [CrossRef]
  4. Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005). [CrossRef]
  5. B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013). [CrossRef]
  6. G. A. Newburgh, Z. Fleischman, and M. Dubinskii, “Highly efficient dual-wavelength laser operation of cryo-cooled resonantly (in-band) pumped Ho3+:YVO4 laser,” Opt. Lett. 37, 3888–3890 (2012). [CrossRef]
  7. S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33, 764–766 (2008). [CrossRef]
  8. A. Bellemare, M. Karásek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000). [CrossRef]
  9. X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20, 7088–7094 (2012). [CrossRef]
  10. X. Feng, H.-y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006). [CrossRef]
  11. G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21, 1250–1252 (1996). [CrossRef]
  12. S. Qin, D. Chen, Y. Tang, and S. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and erbium-doped fiber gains,” Opt. Express 14, 10522–10527 (2006). [CrossRef]
  13. G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett. 14, 606–608 (2002). [CrossRef]
  14. Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004). [CrossRef]
  15. L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007). [CrossRef]
  16. V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994). [CrossRef]
  17. D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983). [CrossRef]
  18. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12, 2056–2061 (2004). [CrossRef]
  19. J. Sun, J. Qiu, and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000). [CrossRef]
  20. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16, 11830–11835 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited