OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4613–4619

Highly sensitive and fast detection of propane–butane using a 3 μm quantum cascade laser

Jana Jágerská, Béla Tuzson, Herbert Looser, Alfredo Bismuto, Jérôme Faist, Heino Prinz, and Lukas Emmenegger  »View Author Affiliations

Applied Optics, Vol. 52, Issue 19, pp. 4613-4619 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A mid-IR optical analyzer based on a 3 μm Fabry–Perot quantum cascade laser has been developed for ultrafast detection of aerosol propellants, such as propane and butane. Given the laser emission bandwidth of 35cm1, the system is spectrally well-matched to the C–H vibrational band of hydrocarbons, it is insusceptible to water interference, and stable enough to operate without wavelength scanning. Thus, it offers both high sensitivity and speed, reaching 1 ppm precision within a measurement time of 10 ms. The performance of the instrument is evaluated with an industrial demonstrator for aerosol cans leak testing, confirming that, in compliance with international directives, it can detect leaks of 1.2×104slpm at a rate of 500 cans per minute.

© 2013 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:

Original Manuscript: March 7, 2013
Revised Manuscript: May 22, 2013
Manuscript Accepted: May 22, 2013
Published: June 26, 2013

Jana Jágerská, Béla Tuzson, Herbert Looser, Alfredo Bismuto, Jérôme Faist, Heino Prinz, and Lukas Emmenegger, "Highly sensitive and fast detection of propane–butane using a 3 μm quantum cascade laser," Appl. Opt. 52, 4613-4619 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. European Agreement concerning the International Carriage of Dangerous Goods by Road, http://www.unece.org/trans/danger/publi/adr/adr2007/07contentse.html , 2007.
  2. B. V. Braune, “Warm water test bath/alternative test methods,” Aerosol Europe 9, 10–13 (2001).
  3. E. Avensbo and L. W. Bade, “Aerosol water bath test,” U.S. Patent3,950,982 A (20April1976).
  4. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994). [CrossRef]
  5. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010). [CrossRef]
  6. R. S. Ramussen, “Vibrational frequency assignments for paraffin hydrocarbons; infrared absorption spectra of the butanes and pentanes,” J. Chem. Phys. 16, 712–727 (1948). [CrossRef]
  7. A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K,” Appl. Phys. Lett. 98, 191104 (2011). [CrossRef]
  8. A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012). [CrossRef]
  9. J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010). [CrossRef]
  10. O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010). [CrossRef]
  11. A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010). [CrossRef]
  12. M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008). [CrossRef]
  13. K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012). [CrossRef]
  14. B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000). [CrossRef]
  15. C. M. Gittins, E. T. Wetjen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivico, J. N. Baillargeon, and A. Y. Cho, “Quantitative gas sensing by backscatter-absorption measurements of a pseudorandom code modulated λ∼8  μm quantum cascade laser,” Opt. Lett. 251162–1164, (2000). [CrossRef]
  16. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008). [CrossRef]
  17. J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011). [CrossRef]
  18. B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008). [CrossRef]
  19. G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005). [CrossRef]
  20. M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011). [CrossRef]
  21. P. Werle, R. Miicke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited