OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4620–4630

High-resolution broadband spectroscopy with a resonator-based phase modulator

Naum K. Berger  »View Author Affiliations


Applied Optics, Vol. 52, Issue 19, pp. 4620-4630 (2013)
http://dx.doi.org/10.1364/AO.52.004620


View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for significant enhancement of the spectral resolution of a Fabry–Perot resonator in transmission and absorption measurements is proposed. In the method, a laser with ultrashort pulses is used as the optical source. A dispersive element is placed in front of the Fabry–Perot resonator and a phase modulator is incorporated into the resonator. The spectrum of the laser pulse transmitted through the system is approximately periodic with ultranarrow peaks. The sample transmission spectrum is measured by scanning the output pulse spectrum. It is demonstrated, in numerical simulations, that for realistic parameters of the phase modulator, the finesse of the Fabry–Perot resonator is increased from 72 to 1900 and a resolution of 1 MHz is achieved. A method for increasing the spectral range of measurements with scanning the periodic spectra is also proposed. The method is based on the use of a waveguide array of Mach–Zehnder interferometers or a single discretely tunable interferometer. The measurement of the sample transmission spectrum within 33 free spectral ranges of the resonator is numerically demonstrated. The spectral range of the measurement can be increased up to 10 THz resulting in the equivalent finesse of the system of 10 7 for a 100 fs laser pulse.

© 2013 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.3120) Optical devices : Integrated optics devices
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Spectroscopy

History
Original Manuscript: March 14, 2013
Manuscript Accepted: May 16, 2013
Published: June 26, 2013

Citation
Naum K. Berger, "High-resolution broadband spectroscopy with a resonator-based phase modulator," Appl. Opt. 52, 4620-4630 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-19-4620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001). [CrossRef]
  2. X. Shan, X. Sun, J. Luo, and M. Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, 1842–1844 (2008). [CrossRef]
  3. X. Liu, A. Lin, G. Sun, D. S. Moon, D. Hwang, and Y. Chung, “Identical-dual-bandpass sampled fiber Bragg grating and its application to ultranarrow filters,” Appl. Opt. 47, 5637–5643 (2008). [CrossRef]
  4. X. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632–634 (2007). [CrossRef]
  5. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24, 2311–2317 (2006). [CrossRef]
  6. D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003). [CrossRef]
  7. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994). [CrossRef]
  8. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004). [CrossRef]
  9. T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope,” J. Opt. Soc. Am. B 25, A101–A110 (2008). [CrossRef]
  10. N. K. Berger, “Spectral measurements with superresolution based on periodic modulation of the spectrum,” Appl. Opt. 47, 6535–6542 (2008). [CrossRef]
  11. N. K. Berger, “Enhancement of resolution of optical spectrum analysers with thermally tuned sampled fibre Bragg grating,” Electron. Lett. 46, 1457–1458 (2010). [CrossRef]
  12. N. K. Berger, “Spectral superresolution with ultrashort optical pulses,” Appl. Opt. 51, 181–190 (2012). [CrossRef]
  13. P. Bousquet, Spectroscopy and Its Instrumentation (Hilger, 1971).
  14. B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004). [CrossRef]
  15. A. J. Effenberger and J. R. Scott, “Practical high-resolution detection method for laser-induced breakdown spectroscopy,” Appl. Opt. 51, B165–B170 (2012). [CrossRef]
  16. A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997). [CrossRef]
  17. N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007). [CrossRef]
  18. J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994). [CrossRef]
  19. J. M. Helbert, P. Laforie, and P. Miche, “Conditions of pressure scanning of a Fabry–Perot interferometer over a wide spectrum range,” Appl. Opt. 16, 2119–2126 (1977). [CrossRef]
  20. W. B. Cook, H. E. Snell, and P. B. Hays, “Multiplex Fabry–Perot interferometer: I. Theory,” Appl. Opt. 34, 5263–5267 (1995). [CrossRef]
  21. H. E. Snell, W. B. Cook, and P. B. Hays, “Multiplex Fabry–Perot interferometer: II. Laboratory prototype,” Appl. Opt. 34, 5268–5277 (1995). [CrossRef]
  22. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005). [CrossRef]
  23. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  24. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004). [CrossRef]
  25. B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011). [CrossRef]
  26. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999). [CrossRef]
  27. N. Picqué, F. Gueye, and G. Guelachvili, “Time-resolved Fourier transform intracavity spectroscopy with a Cr2+:ZnSe laser,” Opt. Lett. 30, 3410–3412 (2005). [CrossRef]
  28. L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007). [CrossRef]
  29. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993). [CrossRef]
  30. T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” J. Lightwave Technol. 16, 824–832 (1998). [CrossRef]
  31. S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001). [CrossRef]
  32. S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator,” Opt. Express 16, 8498–8508 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited