OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4698–4705

Photoacoustic effect measurement in aqueous suspensions of gold nanorods caused by low-frequency and low-power near-infrared pulsing laser irradiation

Cristina Sánchez López de Pablo, Julio Alberto Ramos Ávila, Tamara Fernández Cabada, Francisco del Pozo Guerrero, and José Javier Serrano Olmedo  »View Author Affiliations


Applied Optics, Vol. 52, Issue 19, pp. 4698-4705 (2013)
http://dx.doi.org/10.1364/AO.52.004698


View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When aqueous suspensions of gold nanorods are irradiated with a pulsing laser (808 nm), pressure waves appear even at low frequencies (pulse repetition rate of 25 kHz). We found that the pressure wave amplitude depends on the dynamics of the phenomenon. For fixed concentration and average laser current intensity, the amplitude of the pressure waves shows a trend of increasing with the pulse slope and the pulse maximum amplitude. We postulate that the detected ultrasonic pressure waves are a sort of shock waves that would be generated at the beginning of each pulse, because the pressure wave amplitude would be the result of the positive interference of all the individual shock waves.

© 2013 Optical Society of America

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

History
Original Manuscript: February 22, 2013
Revised Manuscript: May 17, 2013
Manuscript Accepted: June 1, 2013
Published: June 27, 2013

Citation
Cristina Sánchez López de Pablo, Julio Alberto Ramos Ávila, Tamara Fernández Cabada, Francisco del Pozo Guerrero, and José Javier Serrano Olmedo, "Photoacoustic effect measurement in aqueous suspensions of gold nanorods caused by low-frequency and low-power near-infrared pulsing laser irradiation," Appl. Opt. 52, 4698-4705 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-19-4698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008). [CrossRef]
  2. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007). [CrossRef]
  3. H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009). [CrossRef]
  4. G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008). [CrossRef]
  5. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009). [CrossRef]
  6. S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011). [CrossRef]
  7. G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009). [CrossRef]
  8. C. A. Peng and C. H. Wang, “Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation,” Cancers 3, 227–240 (2011). [CrossRef]
  9. G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012). [CrossRef]
  10. A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012). [CrossRef]
  11. R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012). [CrossRef]
  12. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007). [CrossRef]
  13. E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011). [CrossRef]
  14. W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012). [CrossRef]
  15. T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012). [CrossRef]
  16. V. Pustovalov and V. Zharov, “Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles,” Proc. SPIE 6854, 685412 (2008). [CrossRef]
  17. M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003). [CrossRef]
  18. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006). [CrossRef]
  19. R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008). [CrossRef]
  20. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008). [CrossRef]
  21. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009). [CrossRef]
  22. V. P. Pattani and J. W. Tunnell, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012). [CrossRef]
  23. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  24. S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(8), 34–39 (2009). [CrossRef]
  25. G. J. Diebold and T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acta Acust. United Acust. 80, 339–351 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited