OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 19 — Jul. 1, 2013
  • pp: 4743–4748

Fiber-based real-time color digital in-line holography

Adam Kowalczyk, Marcin Bieda, Michal Makowski, Maciej Sypek, and Andrzej Kolodziejczyk  »View Author Affiliations


Applied Optics, Vol. 52, Issue 19, pp. 4743-4748 (2013)
http://dx.doi.org/10.1364/AO.52.004743


View Full Text Article

Enhanced HTML    Acrobat PDF (874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An extremely simple setup for real-time color digital holography using single-mode fibers as light guides and a directional coupler as a beam-splitting device is presented. With the directional coupler we have two object beams and one residual crosstalk used as a reference beam. This facilitates the adjustment and improves robustness. With the use of graphics processing units, real-time hologram reconstruction was possible. Due to adaptation of the optical setup and scaling, zero-order and complex image influence is highly reduced.

© 2013 Optical Society of America

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(090.1705) Holography : Color holography
(090.1995) Holography : Digital holography
(090.5694) Holography : Real-time holography

ToC Category:
Holography

History
Original Manuscript: March 29, 2013
Revised Manuscript: May 26, 2013
Manuscript Accepted: May 27, 2013
Published: June 28, 2013

Citation
Adam Kowalczyk, Marcin Bieda, Michal Makowski, Maciej Sypek, and Andrzej Kolodziejczyk, "Fiber-based real-time color digital in-line holography," Appl. Opt. 52, 4743-4748 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-19-4743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2, 2721–2730 (2011). [CrossRef]
  2. L. Ahrenberg, A. J. Page, B. M. Hennelly, J. B. McDonald, and T. J. Naughton, “Using commodity graphics hardware for real-time digital hologram view-reconstruction,” J. Disp. Technol. 5, 111–119 (2009). [CrossRef]
  3. A. M. P. P. Leite, “Optical fibre illuminators for holography,” Opt. Commun. 28, 303–308 (1979). [CrossRef]
  4. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002). [CrossRef]
  5. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, “Algorithm for reconstruction of digital holograms with adjustable magnification,” Opt. Lett. 29, 1668–1670 (2004). [CrossRef]
  6. A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010). [CrossRef]
  7. Z. Gorocs, M. Kiss, V. Toth, L. Orzo, and S. Tokes, “Multi-color digital holographic microscope (DHM) for biological purposes,” Proc. SPIE 7568, 75681P (2010). [CrossRef]
  8. M. Makowski, I. Ducin, K. Kakarenko, A. Kolodziejczyk, A. Siemion, A. Siemion, J. Suszek, M. Sypek, and D. Wojnowski, “Efficient image projection by Fourier electroholography,” Opt. Lett. 36, 3018–3020 (2011). [CrossRef]
  9. D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcast. 2010, 1 (2010). [CrossRef]
  10. L. Rong, W. Xiao, and F. Pan, “Reduction of speckle noise in digital holography by multiple holograms,” Proc. SPIE 7382, 73823T (2009). [CrossRef]
  11. C. J. Tay, C. Quan, and W. Chen, “Dynamic measurement by digital holographic interferometry based on complex phasor method,” Opt. Laser Technol. 41, 172–180 (2009). [CrossRef]
  12. A. Michalkiewicz, M. Kujawinska, K. Stasiewicz, and L. R. Jaroszewicz, “Digital holocameras for laboratory and outdoor measurements of engineering objects,” Proc. SPIE 6616, 66162P (2007). [CrossRef]
  13. H. I. Bjelkhagen, “Pulsed fiber holography: a new technique for hologram interferometry,” Opt. Eng. 24, 244645 (1984). [CrossRef]
  14. K. Maejima and K. Sato, “One-shot digital holography for real-time recording of moving color 3-D images,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DMA2.
  15. A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Optical properties of the self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008). [CrossRef]
  16. X. F. Xu, L. Z. Cai, Y. R. Wang, X. F. Meng, W. J. Sun, H. Zhang, X. C. Cheng, G. Y. Dong, and X. X. Shen, “Simple direct extraction of unknown phase shift and wavefront reconstruction in generalized phase-shifting interferometry: algorithm and experiments,” Opt. Lett. 33, 776–778 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited