OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 139–149

Size and shape effects on the nonlinear optical behavior of silver nanoparticles for power limiters

Olivier Muller, Stefanie Dengler, Gunnar Ritt, and Bernd Eberle  »View Author Affiliations

Applied Optics, Vol. 52, Issue 2, pp. 139-149 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical limiting behavior of silver nanoparticles with different sizes and shapes is investigated and compared to the optical limiting performance of conventional carbon black suspension (CBS). The optical limiting behavior is characterized by means of nonlinear transmittance and scattered intensity measurements when submitted to nanosecond pulsed Nd:YAG lasers operating at the fundamental or the second harmonic wavelength. We found that the optical limiting effect is strongly particle size dependent and the best performance is achieved with the smaller particles. Moreover, it is shown that the surface plasmon resonance is not the main effect responsible for the nonlinear processes. A theoretical model based on the computation of the Mie scattering functions is exposed, and it is shown that the experimental results can be well explained from the calculations.

© 2013 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(160.0160) Materials : Materials
(190.0190) Nonlinear optics : Nonlinear optics
(290.0290) Scattering : Scattering
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Nonlinear Optics

Original Manuscript: September 26, 2012
Manuscript Accepted: November 5, 2012
Published: January 4, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Olivier Muller, Stefanie Dengler, Gunnar Ritt, and Bernd Eberle, "Size and shape effects on the nonlinear optical behavior of silver nanoparticles for power limiters," Appl. Opt. 52, 139-149 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Dengler, G. Ritt, and B. Eberle, “Optical limiting performance of nanoparticles in liquid and solid media,” Proc. SPIE 7481, 74810T (2009). [CrossRef]
  2. G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U (2009). [CrossRef]
  3. Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000). [CrossRef]
  4. R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006). [CrossRef]
  5. J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. Pure Appl. Opt. 11, 024001 (2009). [CrossRef]
  6. K. Mansour, E. W. van Stryland, and M. J. Soileau, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992). [CrossRef]
  7. D. G. McLean, R. L. Sutherland, M. C. Brant, and D. M. Brandelik, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993). [CrossRef]
  8. D. Vincent and J. Cruickshank, “Optical limiting with C60 and other fullerenes,” Appl. Opt. 36, 7794–7798 (1997). [CrossRef]
  9. C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008). [CrossRef]
  10. V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010). [CrossRef]
  11. S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005). [CrossRef]
  12. L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000). [CrossRef]
  13. M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003). [CrossRef]
  14. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006). [CrossRef]
  15. G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901 (2006). [CrossRef]
  16. H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006). [CrossRef]
  17. L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002). [CrossRef]
  18. Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999). [CrossRef]
  19. K. G. Stamplecoskie and J. C. Scaiano, “Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles,” J. Am. Chem. Soc. 132, 1825–1827 (2010). [CrossRef]
  20. L. M. Liz-Marzan, “Nanomaterials: formation and color—review feature,” Mater. Today 7(2), 26–31 (2004). [CrossRef]
  21. S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012). [CrossRef]
  22. S. Barcikowski, M. Hustedt, and B. Chichkov, “Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,” Polimery 53, 657–662 (2008).
  23. P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011). [CrossRef]
  24. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999). [CrossRef]
  25. J. Yang, R. C. Dennis, and D. K. Sardar, “Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates,” Mater. Res. Bull. 46, 1080–1084 (2011). [CrossRef]
  26. Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007). [CrossRef]
  27. X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008). [CrossRef]
  28. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002). [CrossRef]
  29. J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011). [CrossRef]
  30. K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).
  31. L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008). [CrossRef]
  32. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001). [CrossRef]
  33. C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2, 636–639 (2006). [CrossRef]
  34. H. C. van de Hulst, Light scattering by small particles (Wiley, 1957).
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  36. C. Märtzler, “Matlab functions for Mie scattering and absorption,” Research Report No. 2002–08 (University of Bern, 2002).
  37. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  38. W. Benenson, J. W. Harris, H. Stöcker, and H. Lutz, eds., Handbook of Physics (Verlag, 2002).
  39. M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005). [CrossRef]
  40. L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001). [CrossRef]
  41. R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007). [CrossRef]
  42. ANSI Z136.1-2007, American National Standard for the Safe Use of Lasers (Laser Institute of America, 2007).
  43. M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited