OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 162–170

Thermo-optic characterization of long-range surface-plasmon devices in Cytop

Hui Fan and Pierre Berini  »View Author Affiliations

Applied Optics, Vol. 52, Issue 2, pp. 162-170 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermo-optic modulation experiments were conducted on devices constructed as Au stripes cladded with Cytop designed for a working wavelength of 1310 nm by injecting electric current through metal probes to heat the active region and to change the refractive index of the claddings. Electromigration failure was prevented by controlling the current density below a safety limit. Straight waveguides and single-output Mach–Zehnder interferometers were thermally modulated, in which mode extinction was reached by antiguiding and by destructive interference, respectively. Polymeric memory effects were observed in the operation of the devices.

© 2013 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: September 21, 2012
Manuscript Accepted: November 27, 2012
Published: January 7, 2013

Hui Fan and Pierre Berini, "Thermo-optic characterization of long-range surface-plasmon devices in Cytop," Appl. Opt. 52, 162-170 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  4. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005). [CrossRef]
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005). [CrossRef]
  6. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006). [CrossRef]
  7. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon-polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006). [CrossRef]
  8. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006). [CrossRef]
  9. A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009). [CrossRef]
  10. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391–4402 (2006). [CrossRef]
  11. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006). [CrossRef]
  12. I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971–1977 (2006). [CrossRef]
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005). [CrossRef]
  14. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006). [CrossRef]
  15. K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16, 15546–15552 (2008). [CrossRef]
  16. S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402–404 (2006).
  17. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 455–459 (2004). [CrossRef]
  18. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2000). [CrossRef]
  19. C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010). [CrossRef]
  20. H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 511459–1467 (2012).
  21. Amorphous Fluoropolymer CYTOP, Asahi Glass Co., Ltd, http://www.agc-cytop.com/ , January 2009.
  22. Dupont, Teflon AF Properties, www.dupont.com .
  23. A. W. Wark, H. J. Lee, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Anal. Chem. 77, 5096–5100 (2005). [CrossRef]
  24. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006). [CrossRef]
  25. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007). [CrossRef]
  26. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007). [CrossRef]
  27. Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000). [CrossRef]
  28. Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd.56, 35–38 (Asahi Glass, 2006).
  29. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010). [CrossRef]
  30. M. Paniccia, P. Flynn, and R. Reifenberger, “Scanning probe microscopy studies of electromigration in electroplated Au wires,” J. Appl. Phys. 73, 8189–8197 (1993). [CrossRef]
  31. A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors,” J. Appl. Phys. 79, 163–169(1996). [CrossRef]
  32. T. Rosenzveig, P. G. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys. A 100, 341–346 (2010). [CrossRef]
  33. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008). [CrossRef]
  34. S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.
  35. E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solids (Academic, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited