OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 231–240

Design and calibration of field deployable ground-viewing radiometers

Nikolaus Anderson, Jeffrey Czapla-Myers, Nathan Leisso, Stuart Biggar, Charles Burkhart, Rob Kingston, and Kurtis Thome  »View Author Affiliations


Applied Optics, Vol. 52, Issue 2, pp. 231-240 (2013)
http://dx.doi.org/10.1364/AO.52.000231


View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three improved ground-viewing radiometers were built to support the Radiometric Calibration Test Site (RadCaTS) developed by the Remote Sensing Group (RSG) at the University of Arizona. Improved over previous light-emitting diode based versions, these filter-based radiometers employ seven silicon detectors and one InGaAs detector covering a wavelength range of 400–1550 nm. They are temperature controlled and designed for greater stability and lower noise. The radiometer systems show signal-to-noise ratios of greater than 1000 for all eight channels at typical field calibration signal levels. Predeployment laboratory radiance calibrations using a 1 m spherical integrating source compare well with in situ field calibrations using the solar radiation based calibration method; all bands are within ±2.7% for the case tested.

© 2013 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.0040) Optical devices : Detectors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: October 9, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 5, 2012
Published: January 10, 2013

Citation
Nikolaus Anderson, Jeffrey Czapla-Myers, Nathan Leisso, Stuart Biggar, Charles Burkhart, Rob Kingston, and Kurtis Thome, "Design and calibration of field deployable ground-viewing radiometers," Appl. Opt. 52, 231-240 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-2-231


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Butler and R. A. Barnes, “Calibration strategy for the Earth Observing System (EOS)-AM1 platform,” IEEE Trans. Geosci. Remote Sens. 36, 1056–1061 (1998). [CrossRef]
  2. N. Fox, A. Kaiser-Weiss, W. Schmutz, K. Thome, D. Young, B. Wielicki, R. Winkler, and E. Woolliams, “Accurate radiometry from space: an essential tool for climate studies,” Philos. Trans. R. Soc. 369, 4028–4063 (2011). [CrossRef]
  3. P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer, and B. Yuan, “Reflectance-and radiance-based methods for the in-flight absolute calibration of multispectral sensors,” Remote Sens. Environ. 22, 11–37 (1987). [CrossRef]
  4. P. N. Slater, S. F. Biggar, J. M. Palmer, and K. J. Thome, “Unified approach to absolute radiometric calibration in the solar-reflective range,” Remote Sens. Environ. 77, 293–303 (2001). [CrossRef]
  5. D. Helder, K. Thome, D. Aaron, L. Leigh, J. Czapla-Myers, N. Leisso, S. Biggar, and N. Anderson, “Recent surface reflectance measurement campaigns with emphasis on best practices, SI traceability and uncertainty estimation,” Metrologia 49, S21–S28 (2012). [CrossRef]
  6. K. J. Thome, S. F. Biggar, N. Anderson, J. Czapla-Myers, R. B. Lockwood, S. J. Miller, T. W. Cooley, T. G. Chrien, S. J. Schiller, J. F. Silny, and M. A. Glennon, “Preflight and vicarious calibration of Artemis,” in Geoscience and Remote Sensing Symposium (IGARSS 2008) (IEEE, 2008), Vol. 1, pp. I-249–I-252.
  7. K. J. Thome, K. Arai, S. Tsuchida, and S. F. Biggar, “Vicarious calibration of ASTER via the reflectance-based approach,” IEEE Trans. Geosci. Remote Sens. 46, 3285–3295 (2008). [CrossRef]
  8. B. L. Markham, M. O. Haque, J. A. Barsi, E. Micijevic, D. L. Helder, K. J. Thome, D. Aaron, and J. S. Czapla-Myers, “Landsat-7 ETM+: 12 years on-orbit reflective-band radiometric performance,” IEEE Trans. Geosci. Remote Sens. 50, 2056–2062 (2012).
  9. K. J. Thome, “Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method,” Remote Sens. Environ. 78, 27–38 (2001). [CrossRef]
  10. K. P. Scott, K. J. Thome, and M. R. Brownlee, “Evaluation of the Railroad Valley Playa for use in vicarious calibration,” Proc. SPIE 2818, 158–166 (1996). [CrossRef]
  11. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Janjowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  12. G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik, “Reflectance quantities in optical remote sensing—definitions and case studies,” Remote Sens. Environ. 103, 27–42 (2006). [CrossRef]
  13. A. Berk, P. Acharya, G. Anderson, and B. Gossage, “Recent developments in the MODTRAN atmospheric model and implications for hyperspectral compensation,” in Geoscience and Remote Sensing Symposium (IGARSS 2009) (IEEE, 2009), Vol. 2, pp. II-262–II-265.
  14. F. M. Mims, “Sun photometer with light-emitting diodes as spectrally selective detectors,” Appl. Opt. 31, 6965–6967(1992). [CrossRef]
  15. Y. B. Acharya, A. Jayaraman, S. Ramachandran, and B. H. Subbaraya, “Compact light-emitting-diode sun photometer for atmospheric optical depth measurements,” Appl. Opt. 34, 1209–1214 (1995). [CrossRef]
  16. D. R. Brooks and F. M. Mims, “Development of an inexpensive handheld LED-based Sun photometer for the GLOBE program,” J. Geophys. Res. 106, 4733–4740 (2001). [CrossRef]
  17. F. M. Mims, “An inexpensive and stable LED Sun photometer for measuring the water vapor column over South Texas from 1990 to 2001,” Geophys. Res. Lett. 29, 20.1–20.4 (2002). [CrossRef]
  18. E. Miyazaki, S. Itami, and T. Araki, “Using a light-emitting diode as a high-speed, wavelength selective photodetector,” Rev. Sci. Instrum. 69, 3751–3754 (1998). [CrossRef]
  19. J. S. Czapla-Myers, K. J. Thome, and S. F. Biggar, “Design, calibration, and characterization of a field radiometer using light-emitting diodes as detectors,” Appl. Opt. 47, 6753–6762 (2008). [CrossRef]
  20. J. S. Czapla-Myers, K. J. Thome, B. R. Cocilovo, J. T. McCorkel, and J. H. Buchanan, “Temporal, spectral, and spatial study of the automated vicarious calibration test site at Railroad Valley, Nevada,” Proc. SPIE 7081, 70810I (2008). [CrossRef]
  21. J. S. Czapla-Myers, K. J. Thome, and N. P. Leisso, “Radiometric calibration of earth-observing sensors using an automated test site at Railroad Valley, Nevada,” Can. J. Remote Sens. 36, 474–487 (2010). [CrossRef]
  22. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000).
  23. S. F. Biggar, “Calibration of a visible and near-infrared portable transfer radiometer,” Metrologia 35, 701–706 (1998). [CrossRef]
  24. P. R. Spyak, D. S. Smith, J. Thiry, and C. J. Burkhart, “Short-wave infrared transfer radiometer for the calibration of the Moderate-Resolution Imaging Spectrometer and the Advanced Spaceborne Thermal Emission and Reflection Radiometer,” App. Opt. 39, 5694–5706 (2000). [CrossRef]
  25. S. F. Biggar, K. J. Thome, R. B. Lockwood, and S. Miller, “VNIR transfer radiometer for validation of calibration sources for hyperspectral sensors,” Proc. SPIE 6677, 66770W (2007). [CrossRef]
  26. N. J. Anderson, K. J. Thome, S. F. Biggar, and J. S. Czapla-Myers, “Design and validation of a transfer radiometer,” Proc. SPIE 7081, 708104 (2008). [CrossRef]
  27. K. J. Thome, N. Smith, and K. Scott, “Vicarious calibration of MODIS using Railroad Valley Playa,” in Geoscience and Remote Sensing Symposium (IGARSS 2001) (IEEE, 2001), Vol. 3, pp. 1209–1211.
  28. J. J. Butler, S. J. Janz, B. C. Johnson, R. D. Saunders, J. W. Cooper, M. G. Kowalewski, and R. A. Barnes, “Calibration of a radiance standard for the NPP/OMPS instrument,” Proc. SPIE 7106, 71060Z (2008). [CrossRef]
  29. N. J. Anderson, S. F. Biggar, K. J. Thome, and N. P. Leisso, “Solar radiation-based calibration of laboratory grade radiometers,” Proc. SPIE 6677, 66770X (2007). [CrossRef]
  30. J. H. Walker, R. D. Saunders, J. K. Jackson, and D. A. McSparron, “NBS measurement services: spectral irradiance calibrations,” (National Institute of Standards and Technology, 1987).
  31. S. F. Biggar, P. N. Slater, K. J. Thome, A. H. Holmes, and R. A. Barnes, “Preflight solar-based calibration of SeaWiFS,” Proc. SPIE 1939, 233–242 (1993). [CrossRef]
  32. S. F. Biggar, K. J. Thome, P. R. Spyak, and E. F. Zalewski, “Solar-radiation based calibration in the range 740 to 2400 nm,” Proc. SPIE 3870, 228–233 (1999). [CrossRef]
  33. S. F. Biggar, J. Labed, R. P. Santer, P. N. Slater, R. D. Jackson, and M. S. Moran, “Laboratory calibration of field reflectance panels,” Proc. SPIE 924, 232–240 (1988).
  34. A. R. Ehsani, J. A. Reagan, and W. H. Erxleben, “Design and performance analysis of an automated 10-channel solar radiometer instrument,” J. Atmos. Ocean. Technol. 15, 697–707 (1998). [CrossRef]
  35. F. Kasten and A. T. Young, “Revised optical air mass tables and approximation formula,” Appl. Opt. 28, 4735–4738 (1989). [CrossRef]
  36. World Climate Research Program (WCRP) Publication Series No. 7, WMO ITD—No. 149: 119–126 (1986). The data were compiled by C. Wehrli, World Radiation Center (NRC), Davos-Dorf, Switzerland, under WRC publication, No. 615 (1985).
  37. J. S. Czapla-Myers, N. P. Leisso, N. J. Anderson, and S. F. Biggar, “On-orbit radiometric calibration of Earth-observing sensors using the Radiometric Calibration Test Site (RadCaTS),” Proc. SPIE 8390, 83902B (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited