OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 298–301

Controlling deformation in a high quality factor silica microsphere toward single directional emission

Jin-Ming Cui, Chun-Hua Dong, Chang-Ling Zou, Fang-Wen Sun, Yun-Feng Xiao, Zheng-Fu Han, and Guang-Can Guo  »View Author Affiliations

Applied Optics, Vol. 52, Issue 2, pp. 298-301 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High- Q deformed silica microsphere cavities are fabricated by short CO 2 laser pulses, where the deformation is well controlled by adjusting the intensity and number of pulses. Using this method, directional emission from whispering-gallery mode (WGM) with a high quality factor of 10 7 in these microspheres is achieved, and a transition from two-directional to single-directional emission is observed. Such concentrated directional emission and high- Q of WGMs show high potential for future studies of the chaotic ray dynamics in deformed microcavity and cavity quantum electrodynamics and optomechanics.

© 2013 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(230.5750) Optical devices : Resonators
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 12, 2012
Revised Manuscript: November 25, 2012
Manuscript Accepted: December 2, 2012
Published: January 10, 2013

Jin-Ming Cui, Chun-Hua Dong, Chang-Ling Zou, Fang-Wen Sun, Yun-Feng Xiao, Zheng-Fu Han, and Guang-Can Guo, "Controlling deformation in a high quality factor silica microsphere toward single directional emission," Appl. Opt. 52, 298-301 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003). [CrossRef]
  2. Y. Xiao, C. Zou, Y. Li, C. Dong, Z. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. Chin. 3, 109–124 (2010). [CrossRef]
  3. C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998). [CrossRef]
  4. S. Lacey and H. Wang, “Directional emission from whispering-gallery modes in deformed fused-silica microspheres,” Opt. Lett. 26, 1943–1945 (2001). [CrossRef]
  5. J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006). [CrossRef]
  6. T. Harayama, P. Davis, and K. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003). [CrossRef]
  7. W. Fang, H. Cao, and G. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007). [CrossRef]
  8. S. Mestanza, A. Von Zuben, and N. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009). [CrossRef]
  9. K. Shima, R. Omori, and A. Suzuki, “High-Q concentrated directional emission from egg-shaped asymmetric resonant cavities,” Opt. Lett. 26, 795–797 (2001). [CrossRef]
  10. S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009). [CrossRef]
  11. Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009). [CrossRef]
  12. C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).
  13. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003). [CrossRef]
  14. C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008). [CrossRef]
  15. Y. Xiao, C. Dong, Z. Han, G. Guo, and Y. Park, “Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses,” Opt. Lett. 32, 644–646 (2007). [CrossRef]
  16. M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009). [CrossRef]
  17. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007). [CrossRef]
  18. V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011). [CrossRef]
  19. C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, and G. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009). [CrossRef]
  20. C. Zou, H. Schwefel, F. Sun, Z. Han, and G. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011). [CrossRef]
  21. Y. Xiao, C. Dong, C. Zou, Z. Han, L. Yang, and G. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34, 509–511 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited