OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 2 — Jan. 10, 2013
  • pp: 307–313

Current modulation technique used in resonator micro-optic gyro

Ming Lei, Lishuang Feng, Yinzhou Zhi, Huilan Liu, Junjie Wang, Xiaoyuan Ren, and Ni Su  »View Author Affiliations

Applied Optics, Vol. 52, Issue 2, pp. 307-313 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonator micro-optic gyro (RMOG) is a promising candidate for the next generation inertial rotation sensor based on the Sagnac effect. A current modulation technique used in an external cavity laser diode is proposed to construct the gyroscope system for the first time. The resonance curves before and after eliminating accompanying amplitude modulation are theoretically analyzed, calculated, and simulated; the demodulation curves with different modulation currents are formulated theoretically; and the optimum modulation current corresponding to the maximum sensitivity is obtained. The experiment results from the established RMOG experimental setup demonstrate that a bias stability of 2.7deg/s (10 s integrated time) over 600 s, and dynamic range of ±500deg/s are demonstrated in an RMOG with a silica optical waveguide ring resonator having a ring length of 12.8 cm.

© 2013 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:

Original Manuscript: October 1, 2012
Revised Manuscript: November 29, 2012
Manuscript Accepted: November 30, 2012
Published: January 10, 2013

Ming Lei, Lishuang Feng, Yinzhou Zhi, Huilan Liu, Junjie Wang, Xiaoyuan Ren, and Ni Su, "Current modulation technique used in resonator micro-optic gyro," Appl. Opt. 52, 307-313 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).
  2. A. W. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” in Proceedings of the 1990 National Technical Meeting of the Institute of Navigation (ION, 1990), pp. 161–166.
  3. N. Barbour and S. George, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001). [CrossRef]
  4. Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008). [CrossRef]
  5. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984). [CrossRef]
  6. G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).
  7. R. E. Meyer, S. Ezekiel, and D. W. Stowe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644–646 (1983). [CrossRef]
  8. F. Zarinetchi, and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986). [CrossRef]
  9. X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010). [CrossRef]
  10. L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011). [CrossRef]
  11. Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010). [CrossRef]
  12. Z. Zang, K. Mukai, and P. Navaretti, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012). [CrossRef]
  13. Z. Zang, K. Mukai, and P. Navaretti, “High power and stable high coupling efficiency superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011). [CrossRef]
  14. M. Lei, L. Feng, and Y. Zhi, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012). [CrossRef]
  15. X. Y. Ma, F. Y. Lim, and M. Zhang, “Experimental study of polarization maintaining fiber ring resonator in resonator fiber optic gyroscope,” Proc. SPIE 3555, 363–367 (1998). [CrossRef]
  16. M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990). [CrossRef]
  17. G. A. Sanders, N. Demma, and G. F. Rouse, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.
  18. T. Imai, K. Nishide, and H. Ochi, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” Proc. SPIE 1585, 153–155 (1991). [CrossRef]
  19. Z. Jin, X. Yu, and H. Ma, “Resonator fiber optic gyro employing a semiconductor laser,” Appl. Opt. 51, 2856–2864 (2012). [CrossRef]
  20. T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18, 626–665 (1982). [CrossRef]
  21. J. H. Comtois, M. A. Michalicek, and C. C. Barron, “Fabricating micro-instruments in surface-micromachined polycrystalline silicon,” in Proceedings of the 43rd International Instrumentation Symposium (Instrumentation Systems, 1997), pp. 169–179.
  22. K. Hotate, M. Enyama, and S. J. Yamashita, “High density multiplexing technique of fiber Bragg grating sensors by synthesis of optical coherence function,” in Proceedings of the 41st SICE Annual Conference (IEEE, 2002), pp. 2961–2966.
  23. Y. Ren, Z. Jin, and Y. Chen, “Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. 12, 942–950 (2011). [CrossRef]
  24. H. Ma, X. Zhang, and Z. Jin, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006). [CrossRef]
  25. H. Yu, C. Zhang, and L. Feng, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011). [CrossRef]
  26. X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011). [CrossRef]
  27. RIO Inc. datasheet, “Low phase noise, narrow linewidth source for fiber optic sensing applications.”
  28. K. Hotate, K. Takiguhi, and A. Hirose, “Adjusting-free method to eliminate the noise induced by the backscattering in an optical passive resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990). [CrossRef]
  29. K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35, 1076–1077 (1999). [CrossRef]
  30. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643(2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited