OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 20 — Jul. 10, 2013
  • pp: 4779–4791

Development of a dual-pump coherent anti-Stokes Raman spectroscopy system for measurements in supersonic combustion

Gaetano Magnotti, Andrew D. Cutler, and Paul M. Danehy  »View Author Affiliations


Applied Optics, Vol. 52, Issue 20, pp. 4779-4791 (2013)
http://dx.doi.org/10.1364/AO.52.004779


View Full Text Article

Enhanced HTML    Acrobat PDF (1226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work describes the development of a dual-pump coherent anti-Stokes Raman spectroscopy system for simultaneous measurements of the temperature and the absolute mole fraction of N2, O2, and H2 in supersonic combusting flows. Changes to the experimental setup and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperatures above 800 K, errors in the absolute mole fraction are within 1.5%, 0.5%, and 1% of the total composition for N2, O2, and H2, respectively. Standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5% and 1.7% of the total composition for O2, and between 1.5% and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: March 20, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 17, 2013
Published: July 3, 2013

Citation
Gaetano Magnotti, Andrew D. Cutler, and Paul M. Danehy, "Development of a dual-pump coherent anti-Stokes Raman spectroscopy system for measurements in supersonic combustion," Appl. Opt. 52, 4779-4791 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-20-4779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Anderson and A. C. Eckbreth, “Simultaneous coherent anti-Stokes Raman spectroscopy measurements in hydrogen fueled supersonic combustion,” J. Propul. Power 8, 7–15 (1992). [CrossRef]
  2. S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999). [CrossRef]
  3. A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003). [CrossRef]
  4. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
  5. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Combustion Science and Technology Book Series (Taylor & Francis, 1996).
  6. R. P. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett. 12, 78–80 (1987). [CrossRef]
  7. S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007). [CrossRef]
  8. G. Magnotti, A. D. Cutler, and P. M. Danehy, “Beam shaping for CARS measurements in turbulent environments,” Appl. Opt. 51, 4730–4741 (2012). [CrossRef]
  9. G. Magnotti and A. D. Cutler, “Dual-pump CARS development and application to supersonic combustion,” CR-2012-217569 (NASA, 2012).
  10. G. Magnotti, A. D. Cutler, and P. M. Danehy, “Development of a dual-pump CARS system for measurements in a supersonic combusting free jet,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, AIAA-2012-1193.
  11. S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustor-heated Mach 1.6 jet,” presented at the 47th Aerospace Sciences Meeting, Orlando, FL, 2009, AIAA-2009-0524.
  12. G. Magnotti, “Development of a dual pump CARS system for measurements in a supersonic combusting free jet,” The George Washington University, MAE Department, 2012.
  13. A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).
  14. A. D. Cutler, G. Magnotti, L. Cantu, and E. Gallo, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘C’,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2013).
  15. G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012). [CrossRef]
  16. A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978). [CrossRef]
  17. D. Bivolaru and G. C. Herring, “Focal plane imaging of crossed beams in non-linear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007). [CrossRef]
  18. E. H. van Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005). [CrossRef]
  19. A. D. Cutler and G. Magnotti, “CARS spectral fitting with multiple resonant species using sparse libraries,” J. Raman Spectrosc. 42, 1949–1957 (2011). [CrossRef]
  20. R. E. Palmer, “The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information,” SANDIA National Labs, Livermore, CA, 1989.
  21. R. D. Hancock, F. R. Schauer, R. P. Lucht, and R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997). [CrossRef]
  22. P. M. Danehy, S. O’Byrne, and A. D. Cutler, “Coherent anti-Stokes Raman scattering (CARS) as a probe for supersonic hydrogen-fuel/air mixing,” in Proceedings of the JANNAF APS/CS/PSHS/MSS Joint MeetingColorado Springs, Colorado (December2003).
  23. R. H. Tipping and J. P. Bouanich, “On the use of Herman–Wallis factors for diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 71, 99–103 (2001). [CrossRef]
  24. T. James, “Line intensities in the Raman effect of 1Σ diatomic molecules,” J. Chem. Phys. 31, 130 (1959). [CrossRef]
  25. M. Marrocco, G. Magnotti, and A. D. Cutler, “Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species,” J. Raman Spectrosc. 43, 595–598 (2012). [CrossRef]
  26. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997). [CrossRef]
  27. S. A. Tedder, D. Bivolaru, and P. M. Danehy, “Characterization of a Combined CARS and Interferometric Rayleigh Scattering System,” presented at the 45th AIAA Aerospace Science Meeting, Reno, 2007, AIAA 2007-871.
  28. T. Lundeen, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301–6305 (1983). [CrossRef]
  29. R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2 CARS spectra,” Opt. Commun. 40, 417–420 (1982). [CrossRef]
  30. J. Kojima and Q.-V. Nguyen, “Quantitative analysis of spectral interference of spontaneous Raman scattering in high-pressure fuel-rich H2-air combustion,” J. Quant. Spectrosc. Radiat. Transfer 94, 439–466 (2005). [CrossRef]
  31. P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef]
  32. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986). [CrossRef]
  33. P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993). [CrossRef]
  34. S. La and L. E. Harris, “Relative value of the third-order nonresonant susceptibility of water,” Appl. Opt. 25, 4501–4503 (1986). [CrossRef]
  35. G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251–1256 (1986). [CrossRef]
  36. R. L. Farrow, R. P. Lucht, and L. A. Rahn, “Measurements of the nonresonant third-order susceptibilities of gases using coherent anti-Stokes Raman spectroscopy,” J. Opt. Soc. Am. B 4, 1241–1246 (1987). [CrossRef]
  37. D. P. Shelton and J. E. Rice, “Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase,” Chem. Rev. 94, 3–29 (1994). [CrossRef]
  38. J. W. Hahn and E. S. Lee, “Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,” J. Opt. Soc. Am. B 12, 1021–1027 (1995). [CrossRef]
  39. G. Hauchecorne, F. Kerherve, and G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J. Phys. 32, 47–62 (1971). [CrossRef]
  40. M. Pealat, P. Bouchardy, M. Lefebvre, and J. P. Taran, “Precision of multiplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985). [CrossRef]
  41. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, and T. Parameswaran, “Precision of multiplex CARS temperatures using both single-mode and multimode pump lasers,” Appl. Opt. 26, 99–110 (1987). [CrossRef]
  42. S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989). [CrossRef]
  43. S. Prucker, W. Meier, and W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994). [CrossRef]
  44. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996). [CrossRef]
  45. J. P. Kuehner, M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “High-resolution broadband N2 coherent anti-Stokes Raman spectroscopy: comparison of measurements for conventional and modeless broadband dye lasers,” Appl. Opt. 42, 6757–6767 (2003). [CrossRef]
  46. G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006). [CrossRef]
  47. J. W. Hahn, C. W. Park, and S. N. Park, “Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 36, 6722–6728 (1997). [CrossRef]
  48. K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited