OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 20 — Jul. 10, 2013
  • pp: 4797–4805

Quality evaluation of spaceborne SiC mirrors (I): analytical examination of the effects on mirror accuracy by variation in the thermal expansion property of the mirror surface

Masaki Kotani, Tadashi Imai, Haruyoshi Katayama, Yukari Yui, Yoshio Tange, Hidehiro Kaneda, Takao Nakagawa, and Keigo Enya  »View Author Affiliations

Applied Optics, Vol. 52, Issue 20, pp. 4797-4805 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Japan Aerospace Exploration Agency has studied a large-scale lightweight mirror constructed of reaction-bonded silicon carbide-based material as a key technology in future astronomical and earth observation missions. The authors selected silicon carbide as the promising candidate due to excellent characteristics of specific stiffness and thermal stability. One of the most important technical issues for large-scale ceramic components is the uniformity of the material’s property, depending on part and processing. It might influence mirror accuracy due to uneven thermal deformation. The authors conducted systematic case studies for the conditions of CTE by finite element analysis to know the typical influence of material property nonuniformity on mirror accuracy and consequently derived a comprehensive empirical equation for the series of CTE’s main factors. In addition, the authors computationally reproduced the mirror accuracy profile of a small prototype mirror shown in cryogenic testing and hereby verified wide-range practical computational evaluation technology of mirror accuracy.

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(220.4840) Optical design and fabrication : Testing
(240.6700) Optics at surfaces : Surfaces
(350.4600) Other areas of optics : Optical engineering
(350.6090) Other areas of optics : Space optics

ToC Category:
Optics at Surfaces

Original Manuscript: April 26, 2013
Revised Manuscript: May 29, 2013
Manuscript Accepted: May 29, 2013
Published: July 3, 2013

Masaki Kotani, Tadashi Imai, Haruyoshi Katayama, Yukari Yui, Yoshio Tange, Hidehiro Kaneda, Takao Nakagawa, and Keigo Enya, "Quality evaluation of spaceborne SiC mirrors (I): analytical examination of the effects on mirror accuracy by variation in the thermal expansion property of the mirror surface," Appl. Opt. 52, 4797-4805 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Edeson, G. S. Aglietti, and A. R. L. Tatnall, “Conventional stable structures for space optics: the state of the art,” Acta Astronaut. 66, 13–32 (2010). [CrossRef]
  2. J. W. Bilbro, “Lightweight mirrors/optical materials,” in Encyclopedia of Modern Optics, R. D. Guenther, G. D. Steel, and L. Bayvel, eds. (Elsevier, 2005), pp. 460–466.
  3. J. S. Goela and R. L. Taylor, “Large scale fabrication of lightweight Si/SiC lidar mirrors,” Proc. SPIE 1118, 14–24 (1989). [CrossRef]
  4. R. A. Paquin, M. B. Magida, and C. L. Vernold, “Large optics from silicon carbide,” Proc. SPIE 1618, 53–60 (1991). [CrossRef]
  5. Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004). [CrossRef]
  6. E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004). [CrossRef]
  7. J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.
  8. H. Kaneda, T. Onaka, and R. Yamashiro, “Development of SiC mirror for ASTRO-F,” The Institute of Space and Astronautical Science Report 14, 289–295 (2000).
  9. D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005). [CrossRef]
  10. S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003). [CrossRef]
  11. M. R. Krödel and T. Ozaki, “HB-cesic composite for space optics and structures,” Proc. SPIE 6666, 66660E (2007). [CrossRef]
  12. T. Nakagawa, and SPICA Working Group, “SPICA: space infrared telescope for cosmology and astrophysics,” Adv. Space Res. 34, 645–650 (2004). [CrossRef]
  13. T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123–1127 (2005). [CrossRef]
  14. R. Y. Paul, Opto-mechanical Systems Design, 3rd ed. (SPIE, 2006), pp. 111–112.
  15. K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005). [CrossRef]
  16. H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited