OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 20 — Jul. 10, 2013
  • pp: 4813–4819

Disturbance of soliton pulse propagation from higher-order dispersive waveguides

Matthew Marko, Andrzej Veitia, Xiujian Li, and Jiangjun Zheng  »View Author Affiliations

Applied Optics, Vol. 52, Issue 20, pp. 4813-4819 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical soliton pulses offer many applications within optical communication systems, but by definition a soliton is only subjected to second-order anomalous group-velocity-dispersion; an understanding of higher-order dispersion is necessary for practical implementation of soliton pulses. A numerical model of a waveguide was developed using the nonlinear Schrödinger equation, with parameters set to ensure the input pulse energy would be equal to the fundamental soliton energy. Higher-order group-velocity-dispersion was gradually increased, for various temporal widths and waveguide dispersions. A minimum pulse duration of 100 fs was determined to be necessary for fundamental soliton pulse propagation in practical photonic crystal waveguides.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: January 25, 2013
Revised Manuscript: April 13, 2013
Manuscript Accepted: April 19, 2013
Published: July 3, 2013

Matthew Marko, Andrzej Veitia, Xiujian Li, and Jiangjun Zheng, "Disturbance of soliton pulse propagation from higher-order dispersive waveguides," Appl. Opt. 52, 4813-4819 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  2. B. Saleh and M. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  3. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 21, 862–868 (2010).
  4. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, “Optical solitons in a silicon waveguide,” Opt. Express 15, 7682–7688 (2007). [CrossRef]
  5. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef]
  6. A. C. Peacock, “Soliton propagation in tapered silicon core fibers,” Opt. Lett. 35, 3697–3699 (2010). [CrossRef]
  7. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2004).
  8. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observations of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express 18, 15484–15497 (2010). [CrossRef]
  9. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals, Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  10. S. Eggleton, Nonlinear Photonic Crystals (Springer, 2003).
  11. N. C. Panoiu, J. F. McMillan, and C. W. Wong, “Influence of the group-velocity on the pulse propagation in 1D silicon photonic crystal waveguides,” Appl. Phys. A 103, 835–838 (2011).
  12. W. Ding, C. Benton, A. V. Gorbach, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue, “Solitons and spectral broadening in long silicon-on-insulator photonic wires,” Opt. Express 16, 3310–3319 (2008). [CrossRef]
  13. M. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed. (CRC Press, 2001).
  14. T. C. Poon and T. Kim, Engineering Optics with Matlab (World Scientific, 2006).
  15. C. Husko, A. De Rossi, and C. W. Wong, “Effect of multi-photon absorption and free carriers on self-phase modulation in slow-light photonic crystals,” Opt. Lett. 36, 2239–2241 (2011). [CrossRef]
  16. C.-F. Chen, S. Chi, and B. Luo, “Femtosecond soliton propagation in an optical fiber,” Optik 113, 267–271 (2002). [CrossRef]
  17. W. Hseih, X. Chen, J. Dadap, N. Panoiu, and R. Osgood, “Cross-phase modulation-induced spectral and teporal effects on co-propagating femtosecond pulses in silicon photonic wires,” Opt. Express 15, 3310–3319 (2007).
  18. Q. Lin, O. Painter, and G. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
  19. D. Tan, P. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun. 1, 116 (2011).
  20. W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, and R. M. De La Rue, “Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique,” Opt. Express 18, 26625–26630 (2010). [CrossRef]
  21. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31, 1295–1297 (2006). [CrossRef]
  22. C. J. Benton and D. V. Skryabin, “Coupling induced anomalous group velocity dispersion in nonlinear arrays of silicon photonic wires,” Opt. Express 17, 5879–5884 (2009). [CrossRef]
  23. J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, “Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion,” J. Mod. Opt. 52, 973 (2005). [CrossRef]
  24. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12, 1551–1561 (2004). [CrossRef]
  25. R. Nagle, E. Kent, B. Saff, and A. D. Snider, Fundamentals of Differential Equations and Boundary Value Problems, 3rd ed. (Addison Wesley, 2000).
  26. R. Haberman, Applied Partial Differential Equations, with Fourier Series and Boundary Value Problems (Pearson Prentice-Hall, 2004).
  27. R. Paschotta, “Transform limit,” http://www.rp-photonics.com/transform_limit.html .
  28. R. Paschotta, “Timebandwidth product,” http://www.rp-photonics.com/time_bandwidth_product.html .
  29. G. Strang, Linear Algebra and its Applications, 3rd ed. (Brooks/Cole, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited