OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 20 — Jul. 10, 2013
  • pp: 4877–4883

Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials

Xiaojun Wu, Baogang Quan, Xuecong Pan, Xinlong Xu, Xinchao Lu, Xiaoxiang Xia, Junjie Li, Changzhi Gu, and Li Wang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 20, pp. 4877-4883 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface-enhanced electromagnetic response in the resonant regions of split-ring resonators offers a sensitive way to probe the surface dipoles formed by alkanethiol molecules with a terahertz wave by a differential transmission (DT) interrogation method. The DT signal mainly comes from the interaction between alkanethiols and metamaterials by electron transfer and/or the variation of the dielectric constant. The Lorentz model is used to demonstrate the principle of DT interrogation theoretically, which suggests the variation of both frequency and damping of resonance can be captured cooperatively. This method has been employed to experimentally demonstrate the sensing feasibility for the chain length dependence of the alkanethiol molecules. Numerical simulations confirm that the enhancement is large at the gap and corner regions of this kind of metamaterials.

© 2013 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: April 12, 2013
Revised Manuscript: June 1, 2013
Manuscript Accepted: June 4, 2013
Published: July 5, 2013

Xiaojun Wu, Baogang Quan, Xuecong Pan, Xinlong Xu, Xinchao Lu, Xiaoxiang Xia, Junjie Li, Changzhi Gu, and Li Wang, "Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials," Appl. Opt. 52, 4877-4883 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007). [CrossRef]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef]
  4. Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007). [CrossRef]
  5. C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, “Metamaterial localized resonance sensors: prospects and limitations,” Opt. Express 18, 25075–25080 (2010). [CrossRef]
  6. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010). [CrossRef]
  7. X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013). [CrossRef]
  8. X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013). [CrossRef]
  9. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008). [CrossRef]
  10. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007). [CrossRef]
  11. H. J. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave Regime,” J. Appl. Phys. 108, 014908 (2010). [CrossRef]
  12. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008). [CrossRef]
  13. X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011). [CrossRef]
  14. Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, and T.-J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18, 9561–9569 (2010). [CrossRef]
  15. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17, 1107–1115 (2009). [CrossRef]
  16. H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013). [CrossRef]
  17. M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009). [CrossRef]
  18. G. Kumar, A. Cui, S. Pandey, and A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19, 1072–1080 (2011). [CrossRef]
  19. H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008). [CrossRef]
  20. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007). [CrossRef]
  21. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007). [CrossRef]
  22. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011). [CrossRef]
  23. S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009). [CrossRef]
  24. S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010). [CrossRef]
  25. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008). [CrossRef]
  26. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012). [CrossRef]
  27. W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012). [CrossRef]
  28. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011). [CrossRef]
  29. R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011). [CrossRef]
  30. X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008). [CrossRef]
  31. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009). [CrossRef]
  32. X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006). [CrossRef]
  33. X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011). [CrossRef]
  34. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001). [CrossRef]
  35. H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006). [CrossRef]
  36. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001). [CrossRef]
  37. L. S. Jung and C. T. Campbell, “Sticking probabilities in adsorption from liquid solutions: alkylthiols on gold,” Phys. Rev. Lett. 84, 5164–5167 (2000). [CrossRef]
  38. U. MØller, J. R. Folkenberg, and P. U. Jepsen, “Dielectric properties of water in butter and water–AOT–heptane systems measured using terahertz time-domain spectroscopy,” Appl. Spectrosc. 64, 1028–1036 (2010). [CrossRef]
  39. B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006). [CrossRef]
  40. D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003). [CrossRef]
  41. C.-X. Wu and M. Iwamoto, “Calculation of the dielectric constant of monolayer films with dielectric anisotropy,” Phys. Rev. B 55, 10922–10930 (1997). [CrossRef]
  42. L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008). [CrossRef]
  43. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009). [CrossRef]
  44. M. Knupfer and G. Paasch, “Origin of the interface dipole at interfaces between undoped organic semiconductors and metals,” J. Vac. Sci. Technol. A 23, 1072–1077 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited