OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 20 — Jul. 10, 2013
  • pp: 4922–4932

Open-loop phase shifting for fast acquisition of interferograms in low light levels

Tyler M. McCracken, Colby A. Jurgenson, Chris A. Haniff, David F. Buscher, John S. Young, and Michelle Creech-Eakman  »View Author Affiliations


Applied Optics, Vol. 52, Issue 20, pp. 4922-4932 (2013)
http://dx.doi.org/10.1364/AO.52.004922


View Full Text Article

Enhanced HTML    Acrobat PDF (643 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase shifting interferometry relies on sets of interferograms taken at multiple known phase offsets to deduce the instantaneous phase of a quasi-static fringe pattern. The traditional method for introducing these phase shifts has been either to step a mirror, and measure the fringe pattern at each step, or to scan a mirror, integrating the fringe pattern for discrete time intervals while the fringes “move” on the detector. A stepping mirror eliminates this fringe smear but has typically required a closed-loop controller to ensure that the optical path introduced is accurately known. Furthermore, implementing rapid stepping of a moderately sized optic can prove difficult if the fringe phase needs to be measured on a short time scale. We report results demonstrating very fast (>100Hz) and precise phase shifting using a piezomodulated mirror operated in open-loop without any position feedback. Our method exploits the use of a synthetic driving waveform that is optimized to match the complex frequency response of the modulator and its supported optic. For phase measurements in the near-infrared at 2.15 μm, and with a time between steps as small as 0.2 ms, we report errors below λ/100 in the desired position of our optic, i.e., an effective optical path difference error of λ/55. For applications in near-infrared stellar interferometry, this implies an enhancement in the fringe-tracking sensitivity of roughly 20% (in the photon-limited regime) over that which is conventionally realized using a swept mirror.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 15, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 6, 2013
Published: July 9, 2013

Citation
Tyler M. McCracken, Colby A. Jurgenson, Chris A. Haniff, David F. Buscher, John S. Young, and Michelle Creech-Eakman, "Open-loop phase shifting for fast acquisition of interferograms in low light levels," Appl. Opt. 52, 4922-4932 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-20-4922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Moore, R. McBride, J. S. Barton, and J. D. C. Jones, “Closed-loop phase stepping in a calibrated fiber-optic fringe projector for shape measurement,” Appl. Opt. 41, 3348–3354 (2002). [CrossRef]
  2. G. Li, Y. Li, K. Yang, and M. Liu, “A linearity tunable DBR fiber laser based on closed-loop PZT,” Opt. Laser Technol. 45, 702–704 (2013). [CrossRef]
  3. X.-j. Duan, F.-j. Duan, and C.-r. Lv, “Phase stabilizing method based on PTAC for fiber-optic interference fringe projection profilometry,” Opt. Laser Technol. 47, 137–143 (2013). [CrossRef]
  4. H. Jung, J. Y. Shim, and D. Gweon, “New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep,” Rev. Sci. Instrum. 71, 3436–3440 (2000). [CrossRef]
  5. C. Ai and J. Wyant, “Effect of piezoelectric transducer nonlinearity on phase shift interferometry,” Appl. Opt. 26, 1112–1116 (1987). [CrossRef]
  6. J. D. Monnier, “Optical interferometry in astronomy,” Rep. Prog. Phys. 66, 789–857 (2003). [CrossRef]
  7. C. Haniff, “Ground-based optical interferometry: a practical primer,” New Astron. Rev. 51, 583–596 (2007). [CrossRef]
  8. E. Pedretti, W. A. Traub, J. D. Monnier, R. Millan-Gabet, N. P. Carleton, F. P. Schloerb, M. K. Brewer, J.-P. Berger, M. G. Lacasse, and S. Ragland, “Robust determination of optical path difference: fringe tracking at the Infrared Optical Telescope Array interferometer,” Appl. Opt. 44, 5173–5179 (2005). [CrossRef]
  9. J. D. Monnier, F. Baron, M. Anderson, S. Kraus, R. Millan-Gabet, E. Pedretti, X. Che, T. A. ten Brummelaar, and N. Calvet, “Tracking faint fringes with the CHARA-Michigan Phasetracker (CHAMP),” Proc. SPIE 8845, 88451I (2012). [CrossRef]
  10. F. Cassaing, B. Fleury, C. Coudrain, P. Madec, E. di Folco, A. Glindemann, and S. A. Leveque, “Optimized fringe tracker for the VLTI/PRIMA instrument,” Proc. SPIE 4006, 152–163 (2000). [CrossRef]
  11. J. Sahlmann, S. Ménardi, M. Accardo, R. Abuter, S. Mottini, and F. Delplancke, “The PRIMA fringe sensor unit,” Astron. Astrophys. 507, 1739–1757 (2009). [CrossRef]
  12. T. A. ten Brummelaar, H. A. McAlister, S. T. Ridgway, W. G. Bagnuolo, N. H. Turner, L. Sturmann, J. Sturmann, D. H. Berger, C. E. Ogden, R. Cadman, W. I. Hartkopf, C. H. Hopper, and M. A. Shure, “First results from the CHARA Array. II. A description of the instrument,” Astrophys. J. 628, 453–465 (2005). [CrossRef]
  13. D. H. Berger, J. D. Monnier, R. Millan-Gabet, T. A. ten Brummelaar, P. Muirhead, E. Pedretti, and N. Thureau, “CHARA Michigan phase-tracker (CHAMP): design and fabrication,” Proc. SPIE 6268, 62683K (2006). [CrossRef]
  14. J.-B. Le Bouquin, R. Abuter, P. Haguenauer, B. Bauvir, D. Popovic, and E. Pozna, “Post-processing the VLTI fringe-tracking data: first measurements of stars,” Astron. Astrophys. 493, 747–752 (2009). [CrossRef]
  15. J. T. Armstrong, D. Mozurkewich, L. J. Rickard, D. J. Hutter, J. A. Benson, P. F. Bowers, N. M. Elias, C. A. Hummel, K. J. Johnston, D. F. Buscher, J. H. Clark, L. Ha, L.-C. Ling, N. M. White, and R. S. Simon, “The navy prototype optical interferometer,” Astrophys. J. 496, 550–571 (1998). [CrossRef]
  16. G. Vasisht and A. J. Booth, “Performance and verification of the Keck Interferometer fringe detection and tracking system,” Proc. SPIE 4838, 824 (2003). [CrossRef]
  17. M. M. Colavita, A. Booth, J. Garcia-Gathright, G. Vasisht, R. Johnson, and K. Summers, “Fringe measurement and control for the Keck Interferometer,” Publ. Astron. Soc. Pac. 122, 795–807 (2010). [CrossRef]
  18. M. M. Colavita, J. K. Wallace, B. E. Hines, Y. Gursel, F. Malbet, D. L. Palmer, X. P. Pan, M. Shao, J. W. Yu, A. F. Boden, P. J. Dumont, J. Gubler, C. D. Koresko, S. R. Kulkarni, B. F. Lane, D. W. Mobley, and G. T. van Belle, “The Palomar Testbed Interferometer,” Astrophys. J. 510, 505–521 (1999). [CrossRef]
  19. F. Bai, “Phase-shifts nπ/2 calibration method for phase-stepping interferometry,” Opt. Express 17, 16861–16868 (2009). [CrossRef]
  20. A. G. Basden and D. F. Buscher, “Improvements for group delay fringe tracking,” Mon. Not. R. Astron. Soc. 357, 656–668 (2005). [CrossRef]
  21. R. Langoju, A. Patil, and P. Rastogi, “Phase-shifting interferometry in the presence of nonlinear phase steps, harmonics, and noise,” Opt. Lett. 31, 1058–1060 (2006). [CrossRef]
  22. M. J. Creech-Eakman, V. Romero, I. Payne, C. Haniff, D. Buscher, C. Aitken, C. Anderson, E. Bakker, T. Coleman, C. Dahl, A. Farris, S. Jiminez, C. Jurgenson, R. King, D. Klinglesmith, K. McCord, T. McCracken, K. Nyland, A. Olivares, M. Richmond, M. Romero, C. Salcido, J. Sandoval, F. Santoro, J. Seamons, R. Selina, A. Shtromberg, J. Steenson, N. Torres, D. Westpfahl, F. Baron, M. Fisher, E. Seneta, X. Sun, D. Wilson, and J. Young, “Magdalena Ridge Observatory Interferometer: advancing to first light and new science,” Proc. SPIE 7734, 773406 (2010). [CrossRef]
  23. C. A. Jurgenson, F. G. Santoro, F. Baron, K. McCord, E. K. Block, D. F. Buscher, C. A. Haniff, J. S. Young, T. A. Coleman, and M. J. Creech-Eakman, “Fringe tracking at the MROI,” Proc. SPIE 7013, 70131C (2008). [CrossRef]
  24. M. M. Colavita, B. E. Hines, and M. Shao, “A high speed optical delay line for stellar interferometry,” in European Southern Observatory Conference and Workshop Proceedings, J. M. Beckers and F. Merkle, eds. (European Southern Observatory, 1992), Vol. 39, p. 1143.
  25. M. S. Fadali and A. Visioli, Digital Control Engineering (Academic, 2009).
  26. L. Pickelmann, Piezomechanik GmbH, Berg am Laim Str. 64, D-81673 Munich (personal communication, 2013).
  27. H. Thorsteinsson and D. F. Buscher, “A fast amplified fringe modulator and its waveform optimisation,” Proc. SPIE 6268, 626837 (2006). [CrossRef]
  28. A. M. Jorgensen, D. Mozurkewich, J. Murphy, M. Sapantaie, J. T. Armstrong, G. C. Gilbreath, R. Hindsley, T. A. Pauls, H. Schmitt, and D. J. Hutter, “Characterization of the NPOI fringe scanning stroke,” Proc. SPIE 6268, 62684A (2006). [CrossRef]
  29. T. Brummelaar, “Correlation measurement and group delay tracking in optical stellar interferometry with a noisy detector,” Mon. Not. R. Astron. Soc. 285, 135–150 (1997). [CrossRef]
  30. D. F. Buscher, “Getting the most out of COAST,” Ph.D. dissertation (University of Cambridge, 1988).
  31. M. M. Colavita, “Fringe visibility estimators for the Palomar Testbed Interferometer,” Publ. Astron. Soc. Pac. 111, 111–117 (1999). [CrossRef]
  32. I. L. Porro, W. A. Traub, and N. P. Carleton, “Effect of telescope alignment on a stellar interferometer,” Appl. Opt. 38, 6055–6067 (1999). [CrossRef]
  33. N. Blind, O. Absil, J. L. Bouquin, J. Berger, and A. Chelli, “Optimized fringe sensors for the VLTI next generation instruments,” Astron. Astrophys. 530, A121 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited